Explanation Regeneration via Multi-Hop ILP Inference over Knowledge Base

Aayushee Gupta, G. Srinivasaraghavan
{"title":"Explanation Regeneration via Multi-Hop ILP Inference over Knowledge Base","authors":"Aayushee Gupta, G. Srinivasaraghavan","doi":"10.18653/v1/2020.textgraphs-1.13","DOIUrl":null,"url":null,"abstract":"Textgraphs 2020 Workshop organized a shared task on ‘Explanation Regeneration’ that required reconstructing gold explanations for elementary science questions. This work describes our submission to the task which is based on multiple components: a BERT baseline ranking, an Integer Linear Program (ILP) based re-scoring and a regression model for re-ranking the explanation facts. Our system achieved a Mean Average Precision score of 0.3659.","PeriodicalId":282839,"journal":{"name":"Proceedings of the Graph-based Methods for Natural Language Processing (TextGraphs)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Graph-based Methods for Natural Language Processing (TextGraphs)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.textgraphs-1.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Textgraphs 2020 Workshop organized a shared task on ‘Explanation Regeneration’ that required reconstructing gold explanations for elementary science questions. This work describes our submission to the task which is based on multiple components: a BERT baseline ranking, an Integer Linear Program (ILP) based re-scoring and a regression model for re-ranking the explanation facts. Our system achieved a Mean Average Precision score of 0.3659.
基于知识库的多跳ILP推理解释再生
Textgraphs 2020 Workshop组织了一项关于“解释再生”的共享任务,该任务需要重建对基础科学问题的黄金解释。这项工作描述了我们提交的任务,该任务基于多个组件:BERT基线排名,基于整数线性程序(ILP)的重新评分和用于重新排名解释事实的回归模型。我们的系统达到了0.3659的平均精度分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信