{"title":"Explanation Regeneration via Multi-Hop ILP Inference over Knowledge Base","authors":"Aayushee Gupta, G. Srinivasaraghavan","doi":"10.18653/v1/2020.textgraphs-1.13","DOIUrl":null,"url":null,"abstract":"Textgraphs 2020 Workshop organized a shared task on ‘Explanation Regeneration’ that required reconstructing gold explanations for elementary science questions. This work describes our submission to the task which is based on multiple components: a BERT baseline ranking, an Integer Linear Program (ILP) based re-scoring and a regression model for re-ranking the explanation facts. Our system achieved a Mean Average Precision score of 0.3659.","PeriodicalId":282839,"journal":{"name":"Proceedings of the Graph-based Methods for Natural Language Processing (TextGraphs)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Graph-based Methods for Natural Language Processing (TextGraphs)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.textgraphs-1.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Textgraphs 2020 Workshop organized a shared task on ‘Explanation Regeneration’ that required reconstructing gold explanations for elementary science questions. This work describes our submission to the task which is based on multiple components: a BERT baseline ranking, an Integer Linear Program (ILP) based re-scoring and a regression model for re-ranking the explanation facts. Our system achieved a Mean Average Precision score of 0.3659.