Breast Cancer Detection Using Deep Learning Technique

Sachin A Urabinahatti, D. Jayadevappa
{"title":"Breast Cancer Detection Using Deep Learning Technique","authors":"Sachin A Urabinahatti, D. Jayadevappa","doi":"10.1109/ICDCECE57866.2023.10150859","DOIUrl":null,"url":null,"abstract":"One of the harmful types of cancer that can affect females is breast cancer. With the aid of images of the microscopic structure, breast cancer can be identified. This study uses mammography images to categorize various types of breast cancer. Image processing techniques can be used successfully in the classification of mammography images. Deep learning provides wonderful performance for the classification of images in many applications among various image processing algorithms. Convolutional neural network (CNN) designs like VGG19, Inception-Net, ResNet50, and others are used in effective classification.","PeriodicalId":221860,"journal":{"name":"2023 International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE)","volume":"2015 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCECE57866.2023.10150859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the harmful types of cancer that can affect females is breast cancer. With the aid of images of the microscopic structure, breast cancer can be identified. This study uses mammography images to categorize various types of breast cancer. Image processing techniques can be used successfully in the classification of mammography images. Deep learning provides wonderful performance for the classification of images in many applications among various image processing algorithms. Convolutional neural network (CNN) designs like VGG19, Inception-Net, ResNet50, and others are used in effective classification.
利用深度学习技术检测乳腺癌
乳腺癌是影响女性的一种有害癌症。借助显微结构图像,可以识别乳腺癌。本研究使用乳房x线摄影图像对不同类型的乳腺癌进行分类。图像处理技术可以成功地用于乳房x线摄影图像的分类。在各种图像处理算法中,深度学习在许多应用中为图像分类提供了出色的性能。卷积神经网络(CNN)设计如VGG19、Inception-Net、ResNet50等被用于有效分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信