J. J. Mompó, Haritz Iribas, Javier Urricelqui, A. Loayssa
{"title":"Second-order non-local effects mitigation in BOTDA sensors by tracking the BFS profile","authors":"J. J. Mompó, Haritz Iribas, Javier Urricelqui, A. Loayssa","doi":"10.1117/12.2265099","DOIUrl":null,"url":null,"abstract":"We demonstrate a technique to mitigate the residual second-order non-local effects in Brillouin optical time-domain analysis (BOTDA) sensors in which the Brillouin frequency shift (BFS) profile is not uniform along the fiber. It is based on adding a wavelength modulation to the probe wave that makes it track the average BFS found along its way. Using this method we are able to inject a total probe wave power of 15 dBm in a 120-km sensing fiber link, which, to the best of our knowledge, is the highest probe power ever demonstrated in a long-range BOTDA sensing fiber link. The enhancement in the detected signal-to-noise ratio brought by the use of such power provides 2-MHz BFS measurement precision at the end of the 120-km sensing link with 3-m spatial resolution, all without the need to resort to additional means such as the use of coding or Raman gain.","PeriodicalId":198716,"journal":{"name":"2017 25th Optical Fiber Sensors Conference (OFS)","volume":"278 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th Optical Fiber Sensors Conference (OFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2265099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We demonstrate a technique to mitigate the residual second-order non-local effects in Brillouin optical time-domain analysis (BOTDA) sensors in which the Brillouin frequency shift (BFS) profile is not uniform along the fiber. It is based on adding a wavelength modulation to the probe wave that makes it track the average BFS found along its way. Using this method we are able to inject a total probe wave power of 15 dBm in a 120-km sensing fiber link, which, to the best of our knowledge, is the highest probe power ever demonstrated in a long-range BOTDA sensing fiber link. The enhancement in the detected signal-to-noise ratio brought by the use of such power provides 2-MHz BFS measurement precision at the end of the 120-km sensing link with 3-m spatial resolution, all without the need to resort to additional means such as the use of coding or Raman gain.