Variational Information Bottleneck for Cross Domain Object Detection

Jiangming Chen, Wanxia Deng, Bo Peng, Tianpeng Liu, Yingmei Wei, Li Liu
{"title":"Variational Information Bottleneck for Cross Domain Object Detection","authors":"Jiangming Chen, Wanxia Deng, Bo Peng, Tianpeng Liu, Yingmei Wei, Li Liu","doi":"10.1109/ICME55011.2023.00381","DOIUrl":null,"url":null,"abstract":"Cross domain object detection leverages a labeled source domain to learn an object detector which performs well in a novel unlabeled target domain. Most existing works mainly align the distribution utilizing the entire image knowledge ignoring the obstacles of task-uncorrelated information to alleviate the domain discrepancy. To tackle this issue, we propose a novel module called Variational Instance Disentanglement (VID) based on information theory which aims to decouple the information of task-correlated while filtering out the task-uncorrelated factors at the instance level. Notably, the proposed VID can be used as a plug-and-play module without bringing extra network parameter cost. We equip it with adversarial network and self-training network forming Variational Instance Disentanglement Adversarial Network (VIDAN) and Variational Instance Disentanglement Self-training Network (VIDSN), respectively. Extensive experiments on multiple widely-used scenarios show that the proposed method improves the performance of the popular frameworks and outperforms state-of-the-art methods.","PeriodicalId":321830,"journal":{"name":"2023 IEEE International Conference on Multimedia and Expo (ICME)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME55011.2023.00381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cross domain object detection leverages a labeled source domain to learn an object detector which performs well in a novel unlabeled target domain. Most existing works mainly align the distribution utilizing the entire image knowledge ignoring the obstacles of task-uncorrelated information to alleviate the domain discrepancy. To tackle this issue, we propose a novel module called Variational Instance Disentanglement (VID) based on information theory which aims to decouple the information of task-correlated while filtering out the task-uncorrelated factors at the instance level. Notably, the proposed VID can be used as a plug-and-play module without bringing extra network parameter cost. We equip it with adversarial network and self-training network forming Variational Instance Disentanglement Adversarial Network (VIDAN) and Variational Instance Disentanglement Self-training Network (VIDSN), respectively. Extensive experiments on multiple widely-used scenarios show that the proposed method improves the performance of the popular frameworks and outperforms state-of-the-art methods.
跨域目标检测的变分信息瓶颈
跨域目标检测利用已标记的源域来学习在新的未标记目标域中表现良好的目标检测器。现有的大部分工作主要是利用整个图像知识对分布进行对齐,忽略了任务不相关信息的阻碍,以缓解领域差异。为了解决这一问题,我们提出了一种基于信息论的变分实例解纠结(VID)模块,该模块旨在对任务相关的信息进行解耦,同时在实例级过滤掉任务不相关的因素。值得注意的是,所提出的VID可以作为即插即用模块使用,而不会带来额外的网络参数成本。我们为其配备对抗网络和自训练网络,分别形成变分实例解纠缠对抗网络(VIDAN)和变分实例解纠缠自训练网络(VIDSN)。在多个广泛使用的场景中进行的大量实验表明,所提出的方法提高了流行框架的性能,并且优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信