Document Clustering Method Using Weighted Semantic Features and Cluster Similarity

Sun Park, D. An, C. I. Cheon
{"title":"Document Clustering Method Using Weighted Semantic Features and Cluster Similarity","authors":"Sun Park, D. An, C. I. Cheon","doi":"10.1109/DIGITEL.2010.23","DOIUrl":null,"url":null,"abstract":"In this paper, a document clustering method that use the weighted semantic features and cluster similarity is introduced to cluster meaningful topics from document set. The proposed method can improve the quality of document clustering because it can avoid clustering the documents whose similarities with topics are high but are meaningless between cluster and document by using the weighted semantic features. Besides, it uses cluster similarity to remove dissimilarity documents in clusters and avoid the biased inherent semantics of the documents to be reflected in clusters by NMF (non-negative matrix factorization). The experimental results demonstrate that the proposed method has better performance than other document clustering methods.","PeriodicalId":430843,"journal":{"name":"2010 Third IEEE International Conference on Digital Game and Intelligent Toy Enhanced Learning","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Third IEEE International Conference on Digital Game and Intelligent Toy Enhanced Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DIGITEL.2010.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

In this paper, a document clustering method that use the weighted semantic features and cluster similarity is introduced to cluster meaningful topics from document set. The proposed method can improve the quality of document clustering because it can avoid clustering the documents whose similarities with topics are high but are meaningless between cluster and document by using the weighted semantic features. Besides, it uses cluster similarity to remove dissimilarity documents in clusters and avoid the biased inherent semantics of the documents to be reflected in clusters by NMF (non-negative matrix factorization). The experimental results demonstrate that the proposed method has better performance than other document clustering methods.
基于加权语义特征和聚类相似度的文档聚类方法
本文提出了一种利用加权语义特征和聚类相似度对文档集中有意义主题进行聚类的方法。该方法利用加权语义特征,避免了对主题相似度高但无意义的文档进行聚类,提高了文档聚类的质量。此外,该方法利用聚类相似度去除聚类中不相似的文档,避免了非负矩阵分解(NMF)在聚类中反映文档的固有语义偏差。实验结果表明,该方法比其他文档聚类方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信