PGAN: Prediction Generative Adversarial Nets for Meshes

Tingting Li, Yunhui Shi, Xiaoyan Sun, Jin Wang, Baocai Yin
{"title":"PGAN: Prediction Generative Adversarial Nets for Meshes","authors":"Tingting Li, Yunhui Shi, Xiaoyan Sun, Jin Wang, Baocai Yin","doi":"10.1109/VCIP47243.2019.8965985","DOIUrl":null,"url":null,"abstract":"Unlike images, the topology similarity among meshes can hardly be handled with traditional signal processing tools because of their irregular structures. Geometry image parameterization provides a way to represent 3D meshes in the form of 2D geometry and normal images. However, most existing methods, including the CoGAN are not suitable for such unnatural images corresponding to meshes. To solve this problem, we propose a Prediction Generative Adversarial Network (PGAN) to learn a joint distribution of geometry and normal images for generating meshes. Particularly, we enforce a prediction constraint on the geometry GAN and normal GAN in our PGAN utilizing the inherent relationship between the geometry and normal. The experimental results on face mesh generation indicate that our PGAN outperforms in generating realistic face models with rich facial attributes such as facial expression and retaining the geometry of the faces.","PeriodicalId":388109,"journal":{"name":"2019 IEEE Visual Communications and Image Processing (VCIP)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP47243.2019.8965985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Unlike images, the topology similarity among meshes can hardly be handled with traditional signal processing tools because of their irregular structures. Geometry image parameterization provides a way to represent 3D meshes in the form of 2D geometry and normal images. However, most existing methods, including the CoGAN are not suitable for such unnatural images corresponding to meshes. To solve this problem, we propose a Prediction Generative Adversarial Network (PGAN) to learn a joint distribution of geometry and normal images for generating meshes. Particularly, we enforce a prediction constraint on the geometry GAN and normal GAN in our PGAN utilizing the inherent relationship between the geometry and normal. The experimental results on face mesh generation indicate that our PGAN outperforms in generating realistic face models with rich facial attributes such as facial expression and retaining the geometry of the faces.
PGAN:网格预测生成对抗网络
与图像不同,网格之间的拓扑相似性由于其结构不规则而难以用传统的信号处理工具处理。几何图像参数化提供了一种以二维几何和法线图像的形式表示三维网格的方法。然而,包括CoGAN在内的大多数现有方法都不适合网格对应的这种非自然图像。为了解决这个问题,我们提出了一种预测生成对抗网络(PGAN)来学习几何图像和法线图像的联合分布以生成网格。特别是,我们利用几何和法线之间的内在关系,在我们的PGAN中对几何GAN和法线GAN实施了预测约束。人脸网格生成的实验结果表明,我们的PGAN在生成具有丰富面部表情等面部属性的逼真人脸模型和保留面部几何形状方面表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信