Benchmarking Offensive and Abusive Language in Dutch Tweets

Tommaso Caselli, H. van der Veen
{"title":"Benchmarking Offensive and Abusive Language in Dutch Tweets","authors":"Tommaso Caselli, H. van der Veen","doi":"10.18653/v1/2023.woah-1.7","DOIUrl":null,"url":null,"abstract":"We present an extensive evaluation of different fine-tuned models to detect instances of offensive and abusive language in Dutch across three benchmarks: a standard held-out test, a task- agnostic functional benchmark, and a dynamic test set. We also investigate the use of data cartography to identify high quality training data. Our results show a relatively good quality of the manually annotated data used to train the models while highlighting some critical weakness. We have also found a good portability of trained models along the same language phenomena. As for the data cartography, we have found a positive impact only on the functional benchmark and when selecting data per annotated dimension rather than using the entire training material.","PeriodicalId":378248,"journal":{"name":"The 7th Workshop on Online Abuse and Harms (WOAH)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 7th Workshop on Online Abuse and Harms (WOAH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2023.woah-1.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present an extensive evaluation of different fine-tuned models to detect instances of offensive and abusive language in Dutch across three benchmarks: a standard held-out test, a task- agnostic functional benchmark, and a dynamic test set. We also investigate the use of data cartography to identify high quality training data. Our results show a relatively good quality of the manually annotated data used to train the models while highlighting some critical weakness. We have also found a good portability of trained models along the same language phenomena. As for the data cartography, we have found a positive impact only on the functional benchmark and when selecting data per annotated dimension rather than using the entire training material.
对荷兰语推特中的攻击性和辱骂性语言进行基准测试
我们在三个基准测试中对不同的微调模型进行了广泛的评估,以检测荷兰语中攻击性和辱骂性语言的实例:一个标准的测试,一个任务不可知的功能基准测试和一个动态测试集。我们还研究了使用数据制图来识别高质量的训练数据。我们的结果显示,用于训练模型的手动注释数据的质量相对较好,同时突出了一些关键的弱点。我们还发现,在相同的语言现象下,训练好的模型具有很好的可移植性。至于数据制图,我们发现只有在功能基准上有积极的影响,并且当每个注释的维度选择数据而不是使用整个训练材料时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信