A Linguistically Interpretable ELANFIS for Classification Problems

C. Pramod, G. Pillai
{"title":"A Linguistically Interpretable ELANFIS for Classification Problems","authors":"C. Pramod, G. Pillai","doi":"10.1109/SSCI.2018.8628689","DOIUrl":null,"url":null,"abstract":"In this paper, a clustering based extreme learning adaptive neuro-fuzzy inference system (CELANFIS) is proposed to improve the interpretability of the neuro-fuzzy model. Sub-clustering of input-output data is done to obtain the cluster centers which are used to obtain the membership function parameters of the CELANFIS, such that it satisfies a novel distinguishability constraint, for improving the interpretability of the network. The consequent parameters are obtained using the Moore-Penrose pseudo inverse thus resulting in faster training. Benchmark real world classification problems are used to evaluate the performance of the proposed network. Performance comparison of the proposed network with the Least Square Support Vector Machine (LS-SVM) and ELANFIS shows a satisfactory tradeoff between model accuracy and interpretability.","PeriodicalId":235735,"journal":{"name":"2018 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI.2018.8628689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a clustering based extreme learning adaptive neuro-fuzzy inference system (CELANFIS) is proposed to improve the interpretability of the neuro-fuzzy model. Sub-clustering of input-output data is done to obtain the cluster centers which are used to obtain the membership function parameters of the CELANFIS, such that it satisfies a novel distinguishability constraint, for improving the interpretability of the network. The consequent parameters are obtained using the Moore-Penrose pseudo inverse thus resulting in faster training. Benchmark real world classification problems are used to evaluate the performance of the proposed network. Performance comparison of the proposed network with the Least Square Support Vector Machine (LS-SVM) and ELANFIS shows a satisfactory tradeoff between model accuracy and interpretability.
用于分类问题的语言可解释ELANFIS
为了提高神经模糊模型的可解释性,提出了一种基于聚类的极限学习自适应神经模糊推理系统(CELANFIS)。对输入输出数据进行子聚类,得到聚类中心,并利用聚类中心得到CELANFIS的隶属函数参数,使其满足一种新的可分辨性约束,从而提高网络的可解释性。利用Moore-Penrose伪逆获得后续参数,从而提高了训练速度。使用基准真实世界分类问题来评估所提出的网络的性能。与最小二乘支持向量机(LS-SVM)和ELANFIS的性能比较表明,该网络在模型精度和可解释性之间取得了令人满意的平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信