Familiarity-to-novelty shift driven by learning: A conceptual and computational model

Quan Wang, Pramod Chandrashekhariah, Gabriele Spina
{"title":"Familiarity-to-novelty shift driven by learning: A conceptual and computational model","authors":"Quan Wang, Pramod Chandrashekhariah, Gabriele Spina","doi":"10.1109/DEVLRN.2011.6037314","DOIUrl":null,"url":null,"abstract":"We propose a new theory explaining the familiarity-to-novelty shift in infant habituation. In our account, infants' interest in a stimulus is related to their learning progress, i.e. the improvement of an internal model of the stimulus. Specifically, we propose infants prefer the stimulus for which its current learning progress is maximal. We also propose a new algorithm called Selective Learning Self Organizing Map (SL-SOM), a biologically inspired modification to SOM, exhibiting familiarity-to-novelty shift. Using this algorithm we present experiments on a robotic platform.","PeriodicalId":256921,"journal":{"name":"2011 IEEE International Conference on Development and Learning (ICDL)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Development and Learning (ICDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEVLRN.2011.6037314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We propose a new theory explaining the familiarity-to-novelty shift in infant habituation. In our account, infants' interest in a stimulus is related to their learning progress, i.e. the improvement of an internal model of the stimulus. Specifically, we propose infants prefer the stimulus for which its current learning progress is maximal. We also propose a new algorithm called Selective Learning Self Organizing Map (SL-SOM), a biologically inspired modification to SOM, exhibiting familiarity-to-novelty shift. Using this algorithm we present experiments on a robotic platform.
由学习驱动的从熟悉到新奇的转变:一个概念和计算模型
我们提出了一个新的理论来解释婴儿习惯过程中从熟悉到新奇的转变。在我们的解释中,婴儿对刺激的兴趣与他们的学习进展有关,即刺激的内部模型的改进。具体来说,我们认为婴儿更喜欢当前学习进展最大的刺激。我们还提出了一种新的算法,称为选择性学习自组织图(SL-SOM),这是一种受生物学启发的SOM修改算法,表现出从熟悉到新奇的转变。利用该算法在机器人平台上进行了实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信