Non-Parametric Bayesian Inference for Change Point Detection in Neural Spike Trains

Bastian Alt, Michael Messer, J. Roeper, Gaby Schneider, H. Koeppl
{"title":"Non-Parametric Bayesian Inference for Change Point Detection in Neural Spike Trains","authors":"Bastian Alt, Michael Messer, J. Roeper, Gaby Schneider, H. Koeppl","doi":"10.1109/SSP.2018.8450787","DOIUrl":null,"url":null,"abstract":"We present a model for point processes with gamma distributed increments. We assume a piecewise constant latent process controlling shape and scale of the distribution. For the discrete number of states of the latent process we use a non-parametric assumption by utilizing a Chinese restaurant process (CRP). For the inference of such inhomogeneous gamma processes with an unbounded number of states we do Bayesian inference using Markov Chain Monte Carlo. Finally, we apply the inference algorithm to simulated point processes and to empirical spike train recordings, which inherently possess non-stationary and non-Poissonian behavior.","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present a model for point processes with gamma distributed increments. We assume a piecewise constant latent process controlling shape and scale of the distribution. For the discrete number of states of the latent process we use a non-parametric assumption by utilizing a Chinese restaurant process (CRP). For the inference of such inhomogeneous gamma processes with an unbounded number of states we do Bayesian inference using Markov Chain Monte Carlo. Finally, we apply the inference algorithm to simulated point processes and to empirical spike train recordings, which inherently possess non-stationary and non-Poissonian behavior.
神经脉冲序列变化点检测的非参数贝叶斯推理
我们提出了一个具有伽马分布增量的点过程模型。我们假设一个分段恒定的潜在过程控制分布的形状和规模。对于潜在过程的离散状态数,我们利用中国餐馆过程(CRP)使用非参数假设。对于这类状态数无界的非齐次过程的推理,我们采用马尔可夫链蒙特卡罗方法进行贝叶斯推理。最后,我们将推理算法应用于模拟点过程和经验尖峰序列记录,这些记录固有地具有非平稳和非泊松行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信