A homological model for Uq𝔰𝔩2 Verma modules and their braid representations

Jules Martel
{"title":"A homological model for Uq𝔰𝔩2 Verma modules\nand their braid representations","authors":"Jules Martel","doi":"10.2140/gt.2022.26.1225","DOIUrl":null,"url":null,"abstract":"We extend Lawrence's representations of the braid groups to relative homology modules, and we show that they are free modules over a Laurent polynomials ring. We define homological operators and we show that they actually provide a representation for an integral version for $U_q \\mathfrak{sl}(2)$. We suggest an isomorphism between a given basis of homological modules and the standard basis of tensor products of Verma modules, and we show it to preserve the integral ring of coefficients, the action of $U_q \\mathfrak{sl}(2)$, the braid group representations and their grading. This recovers an integral version for Kohno's theorem relating absolute Lawrence representations with quantum braid representation on highest weight vectors. It is an extension of the latter theorem as we get rid of generic conditions on parameters, and as we recover the entire product of Verma-modules as a braid group and a $U_q \\mathfrak{sl}(2)$-module.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2022.26.1225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

We extend Lawrence's representations of the braid groups to relative homology modules, and we show that they are free modules over a Laurent polynomials ring. We define homological operators and we show that they actually provide a representation for an integral version for $U_q \mathfrak{sl}(2)$. We suggest an isomorphism between a given basis of homological modules and the standard basis of tensor products of Verma modules, and we show it to preserve the integral ring of coefficients, the action of $U_q \mathfrak{sl}(2)$, the braid group representations and their grading. This recovers an integral version for Kohno's theorem relating absolute Lawrence representations with quantum braid representation on highest weight vectors. It is an extension of the latter theorem as we get rid of generic conditions on parameters, and as we recover the entire product of Verma-modules as a braid group and a $U_q \mathfrak{sl}(2)$-module.
Uq𝔩2 Verma模的同调模型及其辫状表示
我们将辫群的Lawrence表示推广到相对同调模,并证明它们是Laurent多项式环上的自由模。我们定义了同调运算符,并证明了它们实际上提供了$U_q \mathfrak{sl}(2)$的整型表示。我们提出了同调模的给定基与Verma模的张量积的标准基之间的同构,并证明了它能保持系数的积分环、$U_q \mathfrak{sl}(2)$的作用、编织群表示及其等级。这恢复了Kohno定理的积分版本,该定理将绝对劳伦斯表示与最高权向量上的量子辫表示联系起来。它是后一个定理的扩展,因为我们去掉了参数上的一般条件,并且我们恢复了verma模块的整个乘积作为一个辫群和一个$U_q \mathfrak{sl}(2)$-模块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信