ReDSOM: Relative Density Visualization of Temporal Changes in Cluster Structures Using Self-Organizing Maps

Denny, Graham J. Williams, P. Christen
{"title":"ReDSOM: Relative Density Visualization of Temporal Changes in Cluster Structures Using Self-Organizing Maps","authors":"Denny, Graham J. Williams, P. Christen","doi":"10.1109/ICDM.2008.34","DOIUrl":null,"url":null,"abstract":"We introduce a self-organizing map (SOM) based visualization method that compares cluster structures in temporal datasets using relative density SOM (ReDSOM) visualization. Our method, combined with a distance matrix-based visualization, is capable of visually identifying emerging clusters, disappearing clusters, enlarging clusters, contracting clusters, the shifting of cluster centroids, and changes in cluster density. For example, when a region in a SOM becomes significantly more dense compared to an earlier SOM, and well separated from other regions, then the new region can be said to represent a new cluster. The capabilities of ReDSOM are demonstrated using synthetic datasets, as well as real-life datasets from the World Bank and the Australian Taxation Office. The results on the real-life datasets demonstrate that changes identified interactively can be related to actual changes. The identification of such cluster changes is important in many contexts, including the exploration of changes in population behavior in the context of compliance and fraud in taxation.","PeriodicalId":252958,"journal":{"name":"2008 Eighth IEEE International Conference on Data Mining","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Eighth IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2008.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

We introduce a self-organizing map (SOM) based visualization method that compares cluster structures in temporal datasets using relative density SOM (ReDSOM) visualization. Our method, combined with a distance matrix-based visualization, is capable of visually identifying emerging clusters, disappearing clusters, enlarging clusters, contracting clusters, the shifting of cluster centroids, and changes in cluster density. For example, when a region in a SOM becomes significantly more dense compared to an earlier SOM, and well separated from other regions, then the new region can be said to represent a new cluster. The capabilities of ReDSOM are demonstrated using synthetic datasets, as well as real-life datasets from the World Bank and the Australian Taxation Office. The results on the real-life datasets demonstrate that changes identified interactively can be related to actual changes. The identification of such cluster changes is important in many contexts, including the exploration of changes in population behavior in the context of compliance and fraud in taxation.
基于自组织图的聚类结构时间变化的相对密度可视化
本文介绍了一种基于自组织映射(SOM)的可视化方法,该方法使用相对密度SOM (ReDSOM)可视化来比较时态数据集中的聚类结构。结合基于距离矩阵的可视化方法,可以直观地识别新出现的簇、消失的簇、扩大的簇、收缩的簇、簇质心的移动以及簇密度的变化。例如,当SOM中的一个区域与早期的SOM相比变得更加密集,并且与其他区域分离得很好时,则可以说新区域代表了一个新的集群。ReDSOM的功能通过合成数据集以及来自世界银行和澳大利亚税务局的真实数据集进行了演示。在实际数据集上的结果表明,交互式识别的变化可以与实际变化相关联。在许多情况下,识别这种集群变化是很重要的,包括在税收合规和欺诈的背景下探索人口行为的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信