Personalized Lecture Recommendations to Facilitate Bite-Sized Learning

Meltem Tutar, Austin Wang, Gulsen Kutluoglu
{"title":"Personalized Lecture Recommendations to Facilitate Bite-Sized Learning","authors":"Meltem Tutar, Austin Wang, Gulsen Kutluoglu","doi":"10.1145/3430895.3460988","DOIUrl":null,"url":null,"abstract":"This paper presents an unsupervised, content-based approach to match users with shorter pieces of specific learning content, lectures, to target their learning goals at a more granular level. This method is especially useful when implicit data is unreliable or limited. At a high level, our approach generates a set of lectures for every topic via clustering and then matches lectures to users via users' topic affinities. Our central hypothesis is that important, fundamental concepts are repeated within many courses on the same topic, and by extracting clusters, we can identify these key information lectures per topic.","PeriodicalId":125581,"journal":{"name":"Proceedings of the Eighth ACM Conference on Learning @ Scale","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eighth ACM Conference on Learning @ Scale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3430895.3460988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents an unsupervised, content-based approach to match users with shorter pieces of specific learning content, lectures, to target their learning goals at a more granular level. This method is especially useful when implicit data is unreliable or limited. At a high level, our approach generates a set of lectures for every topic via clustering and then matches lectures to users via users' topic affinities. Our central hypothesis is that important, fundamental concepts are repeated within many courses on the same topic, and by extracting clusters, we can identify these key information lectures per topic.
个性化的课程推荐,以促进循序渐进的学习
本文提出了一种无监督的、基于内容的方法,将用户与较短的特定学习内容、讲座相匹配,从而在更细粒度的层面上瞄准他们的学习目标。当隐式数据不可靠或有限时,此方法特别有用。在高层次上,我们的方法通过聚类为每个主题生成一组讲座,然后通过用户的主题亲和力将讲座与用户进行匹配。我们的中心假设是,重要的基本概念在同一主题的许多课程中重复出现,通过提取聚类,我们可以识别每个主题的关键信息讲座。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信