Classification of IoT based DDoS Attack using Machine Learning Techniques

Muhammad Fasih Ashfaq, M. Malik, Urooj Fatima, M. Shahzad
{"title":"Classification of IoT based DDoS Attack using Machine Learning Techniques","authors":"Muhammad Fasih Ashfaq, M. Malik, Urooj Fatima, M. Shahzad","doi":"10.1109/IMCOM53663.2022.9721740","DOIUrl":null,"url":null,"abstract":"Recently, (IoT) the internet of things and other internet-connected devices have witnessed mushroom growth. This has resulted in an infinite and continuous growth of ever- increasing data. The interconnection of sensor networks, bluetooth, WiFi, GSM, LTE, Sigfix networks incur multiplied security challenges as compared to their individual issues. Countering security-related limitations is an increasingly hot research area. One of these problems is DDoS(Distributed denial of service) attacks incur a large number of bots to bottleneck the bandwidth of a server. The intention of this paper is to classify normal and DDoS traffic in the IoT network using existing machine learning techniques.","PeriodicalId":367038,"journal":{"name":"2022 16th International Conference on Ubiquitous Information Management and Communication (IMCOM)","volume":"28 24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 16th International Conference on Ubiquitous Information Management and Communication (IMCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCOM53663.2022.9721740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recently, (IoT) the internet of things and other internet-connected devices have witnessed mushroom growth. This has resulted in an infinite and continuous growth of ever- increasing data. The interconnection of sensor networks, bluetooth, WiFi, GSM, LTE, Sigfix networks incur multiplied security challenges as compared to their individual issues. Countering security-related limitations is an increasingly hot research area. One of these problems is DDoS(Distributed denial of service) attacks incur a large number of bots to bottleneck the bandwidth of a server. The intention of this paper is to classify normal and DDoS traffic in the IoT network using existing machine learning techniques.
基于物联网的DDoS攻击分类使用机器学习技术
最近,物联网(IoT)和其他与互联网相连的设备迅速发展。这导致了不断增加的数据的无限和持续增长。传感器网络、蓝牙、WiFi、GSM、LTE、Sigfix网络的互连,与其各自的问题相比,带来了成倍的安全挑战。克服与安全相关的限制是一个日益热门的研究领域。其中一个问题是DDoS(分布式拒绝服务)攻击会导致大量僵尸程序阻塞服务器的带宽。本文的目的是使用现有的机器学习技术对物联网网络中的正常流量和DDoS流量进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信