A divide and conquer approach to shortest paths in planar layered digraphs

S. Sairam, R. Tamassia, J. Vitter
{"title":"A divide and conquer approach to shortest paths in planar layered digraphs","authors":"S. Sairam, R. Tamassia, J. Vitter","doi":"10.1109/SPDP.1992.242747","DOIUrl":null,"url":null,"abstract":"The authors give efficient parallel algorithms to compute shortest-paths in planar layered digraphs. They show that these digraphs admit special kinds of separators, called one-way separators, which allow paths in the graph to cross them only once. They use these separators to give divide-and-conquer solutions to the problem of finding the shortest paths. They first give a simple algorithm that works on the CREW (concurrent-read exclusive-write) PRAM (parallel random-across machine) model and computes the shortest path between any two vertices of an n-node planar layered diagraph in time O(log/sup 3/ n) using n/log n processors. A CRCW (concurrent-read concurrent-write) version of this algorithm runs in O(log/sup 2/ n log log n) time and uses O(n/log log n) processors. The authors then improve the time bound to O(log/sup 2/ n) on the CREW model and O(log n log log n) on the CRCW model. The processor bounds still remain n log n for the CREW model and n/log log n for the CRCW model.<<ETX>>","PeriodicalId":265469,"journal":{"name":"[1992] Proceedings of the Fourth IEEE Symposium on Parallel and Distributed Processing","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] Proceedings of the Fourth IEEE Symposium on Parallel and Distributed Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPDP.1992.242747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The authors give efficient parallel algorithms to compute shortest-paths in planar layered digraphs. They show that these digraphs admit special kinds of separators, called one-way separators, which allow paths in the graph to cross them only once. They use these separators to give divide-and-conquer solutions to the problem of finding the shortest paths. They first give a simple algorithm that works on the CREW (concurrent-read exclusive-write) PRAM (parallel random-across machine) model and computes the shortest path between any two vertices of an n-node planar layered diagraph in time O(log/sup 3/ n) using n/log n processors. A CRCW (concurrent-read concurrent-write) version of this algorithm runs in O(log/sup 2/ n log log n) time and uses O(n/log log n) processors. The authors then improve the time bound to O(log/sup 2/ n) on the CREW model and O(log n log log n) on the CRCW model. The processor bounds still remain n log n for the CREW model and n/log log n for the CRCW model.<>
分层有向图中最短路径的分而治之方法
给出了计算平面分层有向图中最短路径的有效并行算法。他们表明这些有向图允许特殊类型的分隔符,称为单向分隔符,它允许图中的路径只穿过它们一次。他们使用这些分隔符来给出寻找最短路径的分而治之的解决方案。他们首先给出了一个简单的算法,该算法适用于CREW(并发-读-独占-写)PRAM(并行随机交叉机)模型,并使用n/log n个处理器在O(log/sup 3/ n)时间内计算n节点平面分层图的任意两个顶点之间的最短路径。该算法的CRCW(并发-读并发-写)版本运行时间为O(log/sup 2/ n log log n),使用O(n/log log n)个处理器。然后,作者将CREW模型的时间约束改进为O(log/sup 2/ n), CRCW模型的时间约束为O(log n log log n)。对于CREW模型,处理器边界仍然是n log n,对于CRCW模型,处理器边界仍然是n/log log n。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信