Graph clustering using dirichlet process mixture model

I. Atastina, B. Sitohang, G. A. S. Putri, V. Moertini
{"title":"Graph clustering using dirichlet process mixture model","authors":"I. Atastina, B. Sitohang, G. A. S. Putri, V. Moertini","doi":"10.1109/ICODSE.2017.8285862","DOIUrl":null,"url":null,"abstract":"One of the problems or challenges in performing graph clustering is to determine the number of clusters that best fit to the data being processed. This study is proposing a method to solve the problem using Dirichlet Process Mixture Model (DPMM). DPMM is one of the statistical methods that is already used for data clustering, without the need to define the number of clusters. However, this method has never been used before for graph clustering. Therefore, this study proposes the adaptation so that DPMM can be used for graph clustering. Experiment result shows DPMM method can be used for graph clustering, by applying spectral theory.","PeriodicalId":366005,"journal":{"name":"2017 International Conference on Data and Software Engineering (ICoDSE)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Data and Software Engineering (ICoDSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICODSE.2017.8285862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

One of the problems or challenges in performing graph clustering is to determine the number of clusters that best fit to the data being processed. This study is proposing a method to solve the problem using Dirichlet Process Mixture Model (DPMM). DPMM is one of the statistical methods that is already used for data clustering, without the need to define the number of clusters. However, this method has never been used before for graph clustering. Therefore, this study proposes the adaptation so that DPMM can be used for graph clustering. Experiment result shows DPMM method can be used for graph clustering, by applying spectral theory.
使用dirichlet过程混合模型的图聚类
执行图聚类的问题或挑战之一是确定最适合正在处理的数据的聚类数量。本文提出了一种利用Dirichlet过程混合模型(DPMM)来解决这一问题的方法。DPMM是一种已经用于数据聚类的统计方法,不需要定义聚类的数量。然而,这种方法以前从未被用于图聚类。因此,本研究提出自适应方法,使DPMM可以用于图聚类。实验结果表明,DPMM方法可以应用谱理论进行图聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信