Predictive Mutation Analysis of Test Case Prioritization for Deep Neural Networks

Zhengyuan Wei, Haipeng Wang, Imran Ashraf, William Chan
{"title":"Predictive Mutation Analysis of Test Case Prioritization for Deep Neural Networks","authors":"Zhengyuan Wei, Haipeng Wang, Imran Ashraf, William Chan","doi":"10.1109/QRS57517.2022.00074","DOIUrl":null,"url":null,"abstract":"Testing deep neural networks requires high-quality test cases, but using new test cases would incur the labor-intensive test case labeling issue in the test oracle problem. Test case prioritization for failure-revealing test cases alleviates the problem. Existing metric-based techniques analyze vector-based prediction outputs. They cannot handle regression models. Existing mutation-based techniques either remain ineffective or incur high computational costs. In this paper, we propose EffiMAP, an effective and efficient test case prioritization technique with predictive mutation analysis. In the test phase, without performing a comprehensive mutation analysis, EffiMAP predicts whether model mutants are killed by a test case by the information extracted from the execution trace of the test case. Our experiment shows that EffiMAP significantly outperforms the previous state-of-the-art technique in both effectiveness and efficiency in the test phase of handling test cases of both classification and regression models. This paper is the first work to show the feasibility of predictive mutation analysis to rank test cases with a higher probability of exposing model prediction failures in the domain of deep neural network testing.","PeriodicalId":143812,"journal":{"name":"2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS57517.2022.00074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Testing deep neural networks requires high-quality test cases, but using new test cases would incur the labor-intensive test case labeling issue in the test oracle problem. Test case prioritization for failure-revealing test cases alleviates the problem. Existing metric-based techniques analyze vector-based prediction outputs. They cannot handle regression models. Existing mutation-based techniques either remain ineffective or incur high computational costs. In this paper, we propose EffiMAP, an effective and efficient test case prioritization technique with predictive mutation analysis. In the test phase, without performing a comprehensive mutation analysis, EffiMAP predicts whether model mutants are killed by a test case by the information extracted from the execution trace of the test case. Our experiment shows that EffiMAP significantly outperforms the previous state-of-the-art technique in both effectiveness and efficiency in the test phase of handling test cases of both classification and regression models. This paper is the first work to show the feasibility of predictive mutation analysis to rank test cases with a higher probability of exposing model prediction failures in the domain of deep neural network testing.
深度神经网络测试用例优先级的预测突变分析
测试深度神经网络需要高质量的测试用例,但是使用新的测试用例会在测试oracle问题中引起劳动密集型的测试用例标签问题。测试用例对故障揭示测试用例的优先级可以缓解这个问题。现有的基于度量的技术分析基于向量的预测输出。它们不能处理回归模型。现有的基于突变的技术要么是无效的,要么需要高昂的计算成本。本文提出了一种基于预测突变分析的高效测试用例优先排序技术——EffiMAP。在测试阶段,不需要执行全面的突变分析,EffiMAP通过从测试用例的执行跟踪中提取的信息来预测模型突变是否被测试用例杀死。我们的实验表明,在处理分类和回归模型的测试用例的测试阶段,EffiMAP在有效性和效率方面都明显优于以前最先进的技术。本文首次展示了预测突变分析在深度神经网络测试领域对测试用例进行排序的可行性,该方法具有较高的暴露模型预测失败的概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信