On the evaluation of synthetic hyperspectral imagery

M. Mendenhall, E. Merényi
{"title":"On the evaluation of synthetic hyperspectral imagery","authors":"M. Mendenhall, E. Merényi","doi":"10.1109/WHISPERS.2009.5289077","DOIUrl":null,"url":null,"abstract":"In developing algorithms that exploit model-generated data, it is important to understand the realism of the data generated by that model. One way to address this issue is to exercise a well understood, yet diverse process, that will help draw out the strengths and weaknesses of the data generation system. We accomplish this by using a typical chain of processing steps on a synthetic hyperspectral image created by the Digital Imaging Remote Sensing Image Generation (DIRSIG) tool [1]. The clustering, classification, and feature selection, which are part of this processing, are used to assess the realism of the data based on the performance compared to the similar analysis on real hyperspectral data.","PeriodicalId":242447,"journal":{"name":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2009.5289077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In developing algorithms that exploit model-generated data, it is important to understand the realism of the data generated by that model. One way to address this issue is to exercise a well understood, yet diverse process, that will help draw out the strengths and weaknesses of the data generation system. We accomplish this by using a typical chain of processing steps on a synthetic hyperspectral image created by the Digital Imaging Remote Sensing Image Generation (DIRSIG) tool [1]. The clustering, classification, and feature selection, which are part of this processing, are used to assess the realism of the data based on the performance compared to the similar analysis on real hyperspectral data.
关于合成高光谱图像的评价
在开发利用模型生成数据的算法时,理解该模型生成数据的真实感是很重要的。解决这一问题的一种方法是采用一种易于理解但多种多样的流程,这将有助于找出数据生成系统的优点和缺点。我们通过使用由数字成像遥感图像生成(DIRSIG)工具[1]创建的合成高光谱图像的典型处理步骤链来实现这一目标。聚类、分类和特征选择是该处理的一部分,用于根据对真实高光谱数据的类似分析的性能来评估数据的真实感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信