A Tree Matching Approach for the Temporal Registration of Retinal Images

Xinyu Guo, W. Hsu, M. Lee, T. Wong
{"title":"A Tree Matching Approach for the Temporal Registration of Retinal Images","authors":"Xinyu Guo, W. Hsu, M. Lee, T. Wong","doi":"10.1109/ICTAI.2006.22","DOIUrl":null,"url":null,"abstract":"The temporal registration of retinal images provides an important groundwork for doctors to monitor the progression of diseases. Retinal image registration is challenging because the intensity of the retina and the vascular structure can vary greatly over time. In this paper, we describe a tree matching approach to register retinal images. We model each vessel in a retinal image as a tree, called vessel feature tree (VFT). We design a matching function to compute the similarity of a pair of vessels based on their VFTs. We develop a global alignment algorithm to compute the best match between the vessels in two images. Experiment results on 300 pairs of real-world retina images indicate that the proposed approach is able to achieve an accuracy of 93%","PeriodicalId":169424,"journal":{"name":"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2006.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The temporal registration of retinal images provides an important groundwork for doctors to monitor the progression of diseases. Retinal image registration is challenging because the intensity of the retina and the vascular structure can vary greatly over time. In this paper, we describe a tree matching approach to register retinal images. We model each vessel in a retinal image as a tree, called vessel feature tree (VFT). We design a matching function to compute the similarity of a pair of vessels based on their VFTs. We develop a global alignment algorithm to compute the best match between the vessels in two images. Experiment results on 300 pairs of real-world retina images indicate that the proposed approach is able to achieve an accuracy of 93%
一种用于视网膜图像时间配准的树匹配方法
视网膜图像的时间配准为医生监测疾病进展提供了重要的基础。视网膜图像配准是具有挑战性的,因为视网膜的强度和血管结构可以随时间变化很大。在本文中,我们描述了一种树匹配方法来配准视网膜图像。我们将视网膜图像中的每个血管建模为树,称为血管特征树(VFT)。我们设计了一个匹配函数来计算一对容器的vft的相似性。我们开发了一种全局对齐算法来计算两幅图像中血管之间的最佳匹配。在300对真实视网膜图像上的实验结果表明,该方法能够达到93%的准确率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信