Quantification and Analysis of Combination Drug Synergy in High-Throughput Transcriptome Studies

Z. Gümüş, F. Siso-Nadal, Ada Gjrezi, P. McDonagh, I. Khalil, P. Giannakakou, H. Weinstein
{"title":"Quantification and Analysis of Combination Drug Synergy in High-Throughput Transcriptome Studies","authors":"Z. Gümüş, F. Siso-Nadal, Ada Gjrezi, P. McDonagh, I. Khalil, P. Giannakakou, H. Weinstein","doi":"10.1109/BIBE.2010.46","DOIUrl":null,"url":null,"abstract":"We present an integrated experimental and computational approach designed to identify the key cellular components that either contribute to or drive therapeutic synergy of drug combinations with anticancer activity. The approach includes (i) quantification of drug synergy in high throughput transcriptome experiments, (ii) data-driven reverse engineering and forward simulation technology to develop an in silico model predictive of drug synergy, and (iii) utilization of databases of interaction and functional information in hypothesis generation that are validated experimentally in a final step (iv). The goal is to develop an integrated framework that aids in understanding the mechanistic details of drug synergy to design better combination drugs. We illustrate this approach with an application to the analysis of transcriptome changes in cells exposed to the synergistic anticancer drug combination of farnesyl transferase inhibitors (FTIs) combined with taxanes.","PeriodicalId":330904,"journal":{"name":"2010 IEEE International Conference on BioInformatics and BioEngineering","volume":"163 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on BioInformatics and BioEngineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2010.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present an integrated experimental and computational approach designed to identify the key cellular components that either contribute to or drive therapeutic synergy of drug combinations with anticancer activity. The approach includes (i) quantification of drug synergy in high throughput transcriptome experiments, (ii) data-driven reverse engineering and forward simulation technology to develop an in silico model predictive of drug synergy, and (iii) utilization of databases of interaction and functional information in hypothesis generation that are validated experimentally in a final step (iv). The goal is to develop an integrated framework that aids in understanding the mechanistic details of drug synergy to design better combination drugs. We illustrate this approach with an application to the analysis of transcriptome changes in cells exposed to the synergistic anticancer drug combination of farnesyl transferase inhibitors (FTIs) combined with taxanes.
高通量转录组研究中联合药物协同作用的定量分析
我们提出了一种综合的实验和计算方法,旨在确定促进或驱动抗癌药物联合治疗协同作用的关键细胞成分。该方法包括(i)在高通量转录组实验中定量药物协同作用,(ii)数据驱动的逆向工程和正向模拟技术,以开发预测药物协同作用的硅模型。(iii)在假设生成中利用相互作用和功能信息数据库,并在最后一步(iv)中进行实验验证。目标是开发一个综合框架,帮助理解药物协同作用的机制细节,以设计更好的联合药物。我们通过应用于分析暴露于法尼基转移酶抑制剂(FTIs)与紫杉烷的协同抗癌药物组合的细胞的转录组变化来说明这种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信