Adaptive detection of action potentials using ultra low-power CMOS circuits

B. Gosselin, M. Sawan
{"title":"Adaptive detection of action potentials using ultra low-power CMOS circuits","authors":"B. Gosselin, M. Sawan","doi":"10.1109/BIOCAS.2008.4696911","DOIUrl":null,"url":null,"abstract":"We present ultra low-power CMOS analog circuits for automatic detection of action potentials (APs). The proposed detection strategy locates AP waveforms and completely preserves their integrity. An adaptive threshold is implemented using a local time-averaging filter presenting a large time constant. The filter uses very small transconductances implemented by means of dedicated circuit techniques and subthreshold operation of MOS transistors. Also, a compact voltage squarer pre-processor is introduced to emphasize neural APs prior to detection. The proposed circuits were implemented in a CMOS 0.18-mum process and achieve ultra low-power consumption. Both circuits have been validated in simulations with synthetic neural waveforms. The adaptive threshold circuit dissipates only 27.2 nW, whereas the voltage squarer dissipates 76.7 nW.","PeriodicalId":415200,"journal":{"name":"2008 IEEE Biomedical Circuits and Systems Conference","volume":"2012 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2008.4696911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

We present ultra low-power CMOS analog circuits for automatic detection of action potentials (APs). The proposed detection strategy locates AP waveforms and completely preserves their integrity. An adaptive threshold is implemented using a local time-averaging filter presenting a large time constant. The filter uses very small transconductances implemented by means of dedicated circuit techniques and subthreshold operation of MOS transistors. Also, a compact voltage squarer pre-processor is introduced to emphasize neural APs prior to detection. The proposed circuits were implemented in a CMOS 0.18-mum process and achieve ultra low-power consumption. Both circuits have been validated in simulations with synthetic neural waveforms. The adaptive threshold circuit dissipates only 27.2 nW, whereas the voltage squarer dissipates 76.7 nW.
用超低功耗CMOS电路自适应检测动作电位
我们提出了用于动作电位(ap)自动检测的超低功耗CMOS模拟电路。所提出的检测策略定位AP波形并完全保持其完整性。采用大时间常数的局部时间平均滤波器实现自适应阈值。该滤波器利用专用电路技术和MOS晶体管的亚阈值操作实现极小的跨导。此外,还引入了一个紧凑的电压平方预处理器,以在检测之前强调神经ap。所提出的电路在CMOS 0.18 μ m工艺中实现,并实现了超低功耗。这两种电路都已在合成神经波形的仿真中得到验证。自适应阈值电路的功耗仅为27.2 nW,而电压平方器的功耗为76.7 nW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信