Online Convex Optimization with Switching Costs: Algorithms and Performance

Qingsong Liu, Zhuoran Li, Zhixuan Fang
{"title":"Online Convex Optimization with Switching Costs: Algorithms and Performance","authors":"Qingsong Liu, Zhuoran Li, Zhixuan Fang","doi":"10.23919/WiOpt56218.2022.9930570","DOIUrl":null,"url":null,"abstract":"In this paper, we study the problem of online convex optimization with switching costs (SOCO) that appears in diverse scenarios including power management, video streaming, resource allocation, etc. SOCO refers to online decision problems when the agent incurs both hitting cost and an additional switching cost of changing decisions. We adopt the universal dynamic regret as the performance metric, and consider the case when loss functions are unknown when making decisions. Previous results rely on the assumptions on loss function, e.g., linearity and smoothness, or prior knowledge of regularity measures, e.g., path length of the comparator sequence. In this paper, we propose an algorithm IOMD-SOCO that applies to general convex loss function, and show that the algorithm achieves an order-optimal universal dynamic regret bound. We also propose its parameter-free versions, i.e., without requiring the prior knowledge of path length of the comparator sequence, and achieve the same-order regret bound. We are the first to provide dynamic regret bounds for SOCO with general convex loss functions via parameter-free algorithm. Our numerical experiments show that IOMD-SOCO indeed achieves a substantial performance improvement.","PeriodicalId":228040,"journal":{"name":"2022 20th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 20th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/WiOpt56218.2022.9930570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we study the problem of online convex optimization with switching costs (SOCO) that appears in diverse scenarios including power management, video streaming, resource allocation, etc. SOCO refers to online decision problems when the agent incurs both hitting cost and an additional switching cost of changing decisions. We adopt the universal dynamic regret as the performance metric, and consider the case when loss functions are unknown when making decisions. Previous results rely on the assumptions on loss function, e.g., linearity and smoothness, or prior knowledge of regularity measures, e.g., path length of the comparator sequence. In this paper, we propose an algorithm IOMD-SOCO that applies to general convex loss function, and show that the algorithm achieves an order-optimal universal dynamic regret bound. We also propose its parameter-free versions, i.e., without requiring the prior knowledge of path length of the comparator sequence, and achieve the same-order regret bound. We are the first to provide dynamic regret bounds for SOCO with general convex loss functions via parameter-free algorithm. Our numerical experiments show that IOMD-SOCO indeed achieves a substantial performance improvement.
具有切换代价的在线凸优化:算法和性能
本文研究了在电源管理、视频流、资源分配等多种场景下出现的带有切换代价的在线凸优化问题。SOCO是指当agent同时产生命中成本和改变决策的额外切换成本时的在线决策问题。我们采用通用动态后悔作为性能度量,并在决策时考虑损失函数未知的情况。先前的结果依赖于对损失函数的假设,例如线性和平滑,或对规则度量的先验知识,例如比较器序列的路径长度。本文提出了一种适用于一般凸损失函数的IOMD-SOCO算法,并证明了该算法实现了一个阶最优的通用动态遗憾界。我们还提出了它的无参数版本,即不需要事先知道比较器序列的路径长度,并实现了同阶遗憾界。我们首次通过无参数算法为具有一般凸损失函数的SOCO提供了动态遗憾界。我们的数值实验表明,IOMD-SOCO确实取得了实质性的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信