Tempered Lefschetz thimble method and its application to the Hubbard model away from half filling

M. Fukuma, N. Matsumoto, N. Umeda
{"title":"Tempered Lefschetz thimble method and its application to the Hubbard model away from half filling","authors":"M. Fukuma, N. Matsumoto, N. Umeda","doi":"10.22323/1.363.0090","DOIUrl":null,"url":null,"abstract":"The tempered Lefschetz thimble method (TLTM) is a parallel-tempering algorithm towards solving the numerical sign problem. It tames both the sign and ergodicity problems simultaneously by tempering the system with the flow time of continuous deformations of the integration region. In this article, after reviewing the basics of the TLTM, we explain a new algorithm within the TLTM that enables us to estimate the expectation values precisely with a criterion ensuring global equilibrium and the sufficiency of the sample size. To demonstrate the effectiveness of the algorithm, we apply the TLTM to the quantum Monte Carlo simulation of the Hubbard model away from half filling on a two-dimensional lattice of small size, and show that the obtained numerical results agree nicely with exact values.","PeriodicalId":147987,"journal":{"name":"Proceedings of 37th International Symposium on Lattice Field Theory — PoS(LATTICE2019)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 37th International Symposium on Lattice Field Theory — PoS(LATTICE2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.363.0090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The tempered Lefschetz thimble method (TLTM) is a parallel-tempering algorithm towards solving the numerical sign problem. It tames both the sign and ergodicity problems simultaneously by tempering the system with the flow time of continuous deformations of the integration region. In this article, after reviewing the basics of the TLTM, we explain a new algorithm within the TLTM that enables us to estimate the expectation values precisely with a criterion ensuring global equilibrium and the sufficiency of the sample size. To demonstrate the effectiveness of the algorithm, we apply the TLTM to the quantum Monte Carlo simulation of the Hubbard model away from half filling on a two-dimensional lattice of small size, and show that the obtained numerical results agree nicely with exact values.
回火Lefschetz顶针法及其在远离半填充的Hubbard模型中的应用
回火Lefschetz顶针法是一种求解数值符号问题的并行回火算法。该方法利用积分区域连续变形的流动时间对系统进行回火,同时解决了符号问题和遍历问题。在本文中,在回顾了TLTM的基础知识之后,我们解释了TLTM中的一种新算法,该算法使我们能够使用确保全局均衡和样本量充足的标准精确地估计期望值。为了证明该算法的有效性,我们将TLTM应用于小尺寸二维晶格上远离半填充的Hubbard模型的量子蒙特卡罗模拟,结果表明所得数值结果与精确值吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信