FPL Demo: Logic Shrinkage: A Neural Architecture Search-Based Approach to FPGA Netlist Generation

Marie Auffret, Erwei Wang, James J. Davis
{"title":"FPL Demo: Logic Shrinkage: A Neural Architecture Search-Based Approach to FPGA Netlist Generation","authors":"Marie Auffret, Erwei Wang, James J. Davis","doi":"10.1109/FPL57034.2022.00086","DOIUrl":null,"url":null,"abstract":"Logic shrinkage is an open-source, state-of-the-art neural architecture search (NAS)-based approach to the automated design of DNN inference accelerators that ideally suit FPGA deployment [1], [2]. Where NAS traditionally sees candidate functions such as convolutions automatically evaluated and selected between to form a network, logic shrinkage operates at ultra-fine granularity, resulting in a netlist of LUTs as the topology. Our results for datasets of complexity ranging from MNIST to ImageNet show area and energy efficiency gains vs binary neural networks (BNNs) of up to ~6 x and ~ lOx.","PeriodicalId":380116,"journal":{"name":"2022 32nd International Conference on Field-Programmable Logic and Applications (FPL)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 32nd International Conference on Field-Programmable Logic and Applications (FPL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPL57034.2022.00086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Logic shrinkage is an open-source, state-of-the-art neural architecture search (NAS)-based approach to the automated design of DNN inference accelerators that ideally suit FPGA deployment [1], [2]. Where NAS traditionally sees candidate functions such as convolutions automatically evaluated and selected between to form a network, logic shrinkage operates at ultra-fine granularity, resulting in a netlist of LUTs as the topology. Our results for datasets of complexity ranging from MNIST to ImageNet show area and energy efficiency gains vs binary neural networks (BNNs) of up to ~6 x and ~ lOx.
FPGA演示:逻辑收缩:一种基于神经结构搜索的FPGA网表生成方法
逻辑收缩是一种基于开源、最先进的神经架构搜索(NAS)的方法,用于DNN推理加速器的自动化设计,非常适合FPGA部署[1],[2]。NAS传统上看到的是自动评估和选择卷积等候选函数以形成网络,而逻辑收缩以超细粒度操作,从而产生lut的网络列表作为拓扑。对于从MNIST到ImageNet的复杂数据集,我们的结果显示,与二元神经网络(bnn)相比,面积和能源效率增加了~6倍和~6倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信