Rajdeep Sarkar, Atul Kr. Ojha, Jay Megaro, J. Mariano, Vall Herard, John P. Mccrae
{"title":"Few-shot and Zero-shot Approaches to Legal Text Classification: A Case Study in the Financial Sector","authors":"Rajdeep Sarkar, Atul Kr. Ojha, Jay Megaro, J. Mariano, Vall Herard, John P. Mccrae","doi":"10.18653/v1/2021.nllp-1.10","DOIUrl":null,"url":null,"abstract":"The application of predictive coding techniques to legal texts has the potential to greatly reduce the cost of legal review of documents, however, there is such a wide array of legal tasks and continuously evolving legislation that it is hard to construct sufficient training data to cover all cases. In this paper, we investigate few-shot and zero-shot approaches that require substantially less training data and introduce a triplet architecture, which for promissory statements produces performance close to that of a supervised system. This method allows predictive coding methods to be rapidly developed for new regulations and markets.","PeriodicalId":191237,"journal":{"name":"Proceedings of the Natural Legal Language Processing Workshop 2021","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Natural Legal Language Processing Workshop 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2021.nllp-1.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
The application of predictive coding techniques to legal texts has the potential to greatly reduce the cost of legal review of documents, however, there is such a wide array of legal tasks and continuously evolving legislation that it is hard to construct sufficient training data to cover all cases. In this paper, we investigate few-shot and zero-shot approaches that require substantially less training data and introduce a triplet architecture, which for promissory statements produces performance close to that of a supervised system. This method allows predictive coding methods to be rapidly developed for new regulations and markets.