X. Koutsoukos, F. Zhao, H. Haussecker, J. Reich, Patrick Cheung
{"title":"Fault modeling for monitoring and diagnosis of sensor-rich hybrid systems","authors":"X. Koutsoukos, F. Zhao, H. Haussecker, J. Reich, Patrick Cheung","doi":"10.1109/CDC.2001.980203","DOIUrl":null,"url":null,"abstract":"This paper presents a framework for modeling faults in hybrid systems that leads to an efficient approach for monitoring and diagnosis of real-time embedded systems. We describe a fault parameterization based on hybrid automata models and consider both abrupt failures and gradual degradation of system components. Our approach also addresses the computational problem of coping with large amount of sensor data by using a discrete event model of the system so as to focus distributed signal analysis on when and where to look for signatures of interest. The approach has been demonstrated for the online diagnosis of a hybrid system, the Xerox DC265 printer.","PeriodicalId":131411,"journal":{"name":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2001.980203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42
Abstract
This paper presents a framework for modeling faults in hybrid systems that leads to an efficient approach for monitoring and diagnosis of real-time embedded systems. We describe a fault parameterization based on hybrid automata models and consider both abrupt failures and gradual degradation of system components. Our approach also addresses the computational problem of coping with large amount of sensor data by using a discrete event model of the system so as to focus distributed signal analysis on when and where to look for signatures of interest. The approach has been demonstrated for the online diagnosis of a hybrid system, the Xerox DC265 printer.