A framework of training ANFIS using Chicken Swarm Optimization for solving classification problems

Roslina, M. Zarlis, I. R. Yanto, D. Hartama
{"title":"A framework of training ANFIS using Chicken Swarm Optimization for solving classification problems","authors":"Roslina, M. Zarlis, I. R. Yanto, D. Hartama","doi":"10.1109/IAC.2016.7905759","DOIUrl":null,"url":null,"abstract":"The result of training parameters described Adaptive Neuro-Fuzzy Inference System (ANFIS) performance. The speed and reliability of training effect depend on the training mechanism. There have been many methods used to train the parameters of ANFIS as using GD, metaheuristic techniques, and LSE. But there are still many methods developed to achieve efficiently. One of the proposed algorithm to improve the performance of ANFIS is Chicken swarm optimization (CSO) algorithm. The experimental results of training ANFIS network for classification problems show that ANFIS-CSO algorithm achieved better accuracy.","PeriodicalId":404904,"journal":{"name":"2016 International Conference on Informatics and Computing (ICIC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Informatics and Computing (ICIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAC.2016.7905759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The result of training parameters described Adaptive Neuro-Fuzzy Inference System (ANFIS) performance. The speed and reliability of training effect depend on the training mechanism. There have been many methods used to train the parameters of ANFIS as using GD, metaheuristic techniques, and LSE. But there are still many methods developed to achieve efficiently. One of the proposed algorithm to improve the performance of ANFIS is Chicken swarm optimization (CSO) algorithm. The experimental results of training ANFIS network for classification problems show that ANFIS-CSO algorithm achieved better accuracy.
基于鸡群算法的ANFIS分类训练框架
训练参数的结果描述了自适应神经模糊推理系统(ANFIS)的性能。训练效果的快速性和可靠性取决于训练机制。已有许多方法用于训练ANFIS的参数,如使用GD、元启发式技术和LSE。但仍有许多方法可以有效地实现。鸡群优化算法(Chicken swarm optimization, CSO)是提高ANFIS性能的一种算法。训练ANFIS网络用于分类问题的实验结果表明,ANFIS- cso算法取得了较好的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信