MECA: maximum entropy clustering algorithm

N. Karayiannis
{"title":"MECA: maximum entropy clustering algorithm","authors":"N. Karayiannis","doi":"10.1109/FUZZY.1994.343658","DOIUrl":null,"url":null,"abstract":"This paper presents a new approach to fuzzy clustering, which provides the basis for the development of the maximum entropy clustering algorithm (MECA). The derivation of the proposed algorithm is based on an objective function incorporating a measure of the entropy of the membership functions and a measure of the distortion between the prototypes and the feature vectors. This formulation allows the gradual transition from a maximum uncertainty or minimum selectivity phase to a minimum uncertainty or maximum selectivity phase during the clustering process. Such a transition is achieved by controlling the relative effect of the maximization of the membership entropy and the minimization of the distortion between the prototypes and the feature vectors. The IRIS data set provides the basis for evaluating the proposed algorithms and comparing their performance with that of competing techniques.<<ETX>>","PeriodicalId":153967,"journal":{"name":"Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"91","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1994.343658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 91

Abstract

This paper presents a new approach to fuzzy clustering, which provides the basis for the development of the maximum entropy clustering algorithm (MECA). The derivation of the proposed algorithm is based on an objective function incorporating a measure of the entropy of the membership functions and a measure of the distortion between the prototypes and the feature vectors. This formulation allows the gradual transition from a maximum uncertainty or minimum selectivity phase to a minimum uncertainty or maximum selectivity phase during the clustering process. Such a transition is achieved by controlling the relative effect of the maximization of the membership entropy and the minimization of the distortion between the prototypes and the feature vectors. The IRIS data set provides the basis for evaluating the proposed algorithms and comparing their performance with that of competing techniques.<>
MECA:最大熵聚类算法
提出了一种新的模糊聚类方法,为最大熵聚类算法(MECA)的发展提供了基础。该算法的推导基于一个目标函数,该目标函数包含隶属函数的熵度量和原型与特征向量之间的失真度量。该公式允许在聚类过程中从最大不确定性或最小选择性阶段逐渐过渡到最小不确定性或最大选择性阶段。这种过渡是通过控制隶属熵最大化和原型与特征向量之间失真最小化的相对效应来实现的。IRIS数据集为评估所提出的算法并将其性能与竞争技术进行比较提供了基础
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信