Lung cancer detection by using artificial neural network and fuzzy clustering methods

F. Taher, R. Sammouda
{"title":"Lung cancer detection by using artificial neural network and fuzzy clustering methods","authors":"F. Taher, R. Sammouda","doi":"10.1109/IEEEGCC.2011.5752535","DOIUrl":null,"url":null,"abstract":"The early detection of the lung cancer is a challenging problem, due to the structure of the cancer cells. This paper presents two segmentation methods, Hopfield Neural Network (HNN) and a Fuzzy C-Mean (FCM) clustering algorithm, for segmenting sputum color images to detect the lung cancer in its early stages. The manual analysis of the sputum samples is time consuming, inaccurate and requires intensive trained person to avoid diagnostic errors. The segmentation results will be used as a base for a Computer Aided Diagnosis (CAD) system for early detection of lung cancer which will improves the chances of survival for the patient. The two methods are designed to classify the image of N pixels among M classes. In this study, we used 1000 sputum color images to test both methods, and HNN has shown a better classification result than FCM, the HNN succeeded in extracting the nuclei and cytoplasm regions.","PeriodicalId":119104,"journal":{"name":"2011 IEEE GCC Conference and Exhibition (GCC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"117","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE GCC Conference and Exhibition (GCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEEGCC.2011.5752535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 117

Abstract

The early detection of the lung cancer is a challenging problem, due to the structure of the cancer cells. This paper presents two segmentation methods, Hopfield Neural Network (HNN) and a Fuzzy C-Mean (FCM) clustering algorithm, for segmenting sputum color images to detect the lung cancer in its early stages. The manual analysis of the sputum samples is time consuming, inaccurate and requires intensive trained person to avoid diagnostic errors. The segmentation results will be used as a base for a Computer Aided Diagnosis (CAD) system for early detection of lung cancer which will improves the chances of survival for the patient. The two methods are designed to classify the image of N pixels among M classes. In this study, we used 1000 sputum color images to test both methods, and HNN has shown a better classification result than FCM, the HNN succeeded in extracting the nuclei and cytoplasm regions.
肺癌检测采用人工神经网络和模糊聚类方法
由于癌细胞的结构,肺癌的早期检测是一个具有挑战性的问题。本文采用Hopfield神经网络(HNN)和模糊c均值(FCM)聚类算法两种方法对痰液彩色图像进行分割,以检测早期肺癌。痰样本的人工分析耗时且不准确,需要训练有素的人员来避免诊断错误。分割结果将作为计算机辅助诊断(CAD)系统的基础,用于早期发现肺癌,这将提高患者的生存机会。这两种方法的目的是对M类中N个像素的图像进行分类。在本研究中,我们使用了1000张痰液彩色图像对两种方法进行了测试,HNN比FCM表现出更好的分类结果,HNN成功地提取了细胞核和细胞质区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信