Interactive Segmentation Relabeling for Classification of Whole-Slide Histopathology Imagery

Anoop Haridas, F. Bunyak, K. Palaniappan
{"title":"Interactive Segmentation Relabeling for Classification of Whole-Slide Histopathology Imagery","authors":"Anoop Haridas, F. Bunyak, K. Palaniappan","doi":"10.1109/CBMS.2015.89","DOIUrl":null,"url":null,"abstract":"Collecting ground-truth or gold standard annotations from expert pathologists for developing histopathology analytic algorithms and computer-aided diagnosis for cancer grading is an expensive and time consuming process. Efficient visualization and annotation tools are needed to enable ground-truthing large whole-slide imagery. KOLAM is our scalable, cross-platform framework for interactive visualization of 2D, 2D+t and 3D imagery of high spatial, temporal and spectral resolution. In the current work KOLAM has been extended to support rapid interactive labelling and correction of automatic image classifier-based region labels of the tissue microenvironment by pathologists. Besides annotating regions-of-interest (ROIs), KOLAM enables extraction of the corresponding large polygonal image subregions for input into automatic segmentation algorithms, single-click region label reassignment and maintaining hierarchical image subregions. Experience indicates that clinicians prefer simple-to-use interfaces that support rapid labelling of large image regions with minimal effort. The incorporation of easy-to-use tissue annotation features in KOLAM makes it an attractive candidate for integration within a multi-stage histopathology image analysis pipeline supporting assisted segmentation and labelling to improve whole-slide imagery (WSI) analytics.","PeriodicalId":164356,"journal":{"name":"2015 IEEE 28th International Symposium on Computer-Based Medical Systems","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 28th International Symposium on Computer-Based Medical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2015.89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Collecting ground-truth or gold standard annotations from expert pathologists for developing histopathology analytic algorithms and computer-aided diagnosis for cancer grading is an expensive and time consuming process. Efficient visualization and annotation tools are needed to enable ground-truthing large whole-slide imagery. KOLAM is our scalable, cross-platform framework for interactive visualization of 2D, 2D+t and 3D imagery of high spatial, temporal and spectral resolution. In the current work KOLAM has been extended to support rapid interactive labelling and correction of automatic image classifier-based region labels of the tissue microenvironment by pathologists. Besides annotating regions-of-interest (ROIs), KOLAM enables extraction of the corresponding large polygonal image subregions for input into automatic segmentation algorithms, single-click region label reassignment and maintaining hierarchical image subregions. Experience indicates that clinicians prefer simple-to-use interfaces that support rapid labelling of large image regions with minimal effort. The incorporation of easy-to-use tissue annotation features in KOLAM makes it an attractive candidate for integration within a multi-stage histopathology image analysis pipeline supporting assisted segmentation and labelling to improve whole-slide imagery (WSI) analytics.
全片组织病理图像分类的交互式分割重标记
从专家病理学家那里收集基础事实或金标准注释以开发组织病理学分析算法和计算机辅助诊断以进行癌症分级是一个昂贵且耗时的过程。需要有效的可视化和注释工具,以实现地面真实的大型整张幻灯片图像。KOLAM是我们可扩展的跨平台框架,用于高空间、时间和光谱分辨率的2D、2D+t和3D图像的交互式可视化。在目前的工作中,KOLAM已经扩展到支持病理学家对组织微环境的基于自动图像分类器的区域标签的快速交互式标记和校正。除了标注感兴趣区域(roi)外,KOLAM还可以提取相应的大型多边形图像子区域,用于输入自动分割算法,单击区域标签重新分配和维护分层图像子区域。经验表明,临床医生更喜欢简单易用的界面,支持以最小的努力快速标记大图像区域。KOLAM中易于使用的组织注释功能使其成为多阶段组织病理学图像分析管道中集成的有吸引力的候选者,支持辅助分割和标记,以改善全幻灯片图像(WSI)分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信