G. Poelman, S. Hedayatrasa, J. Segers, W. Paepegem, M. Kersemans
{"title":"A robust multi-scale gapped smoothing algorithm for baseline-free damage mapping from raw thermal images in flash thermography","authors":"G. Poelman, S. Hedayatrasa, J. Segers, W. Paepegem, M. Kersemans","doi":"10.21611/QIRT.2020.020","DOIUrl":null,"url":null,"abstract":"Flash thermography is a promising non-destructive testing technique for the inspection of composite components. However, non-uniform heating, measurement noise and lateral heat diffusion complicate the interpretation of thermographic measurements. In order to overcome these difficulties, a novel baseline-free processing technique called ‘Multi-Scale Gapped Smoothing Algorithm’ is presented. This algorithm constructs a damage map directly from the measured data, in which an (almost) zero-reference background is obtained, and where measurement noise and excitation non-uniformity are effectively suppressed. The efficiency of the proposed technique is evaluated and confirmed through synthetic data and experimental results of a carbon fiber reinforced polymer with various artificial defects.","PeriodicalId":191498,"journal":{"name":"Proceedings of the 2020 International Conference on Quantitative InfraRed Thermography","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 International Conference on Quantitative InfraRed Thermography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21611/QIRT.2020.020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Flash thermography is a promising non-destructive testing technique for the inspection of composite components. However, non-uniform heating, measurement noise and lateral heat diffusion complicate the interpretation of thermographic measurements. In order to overcome these difficulties, a novel baseline-free processing technique called ‘Multi-Scale Gapped Smoothing Algorithm’ is presented. This algorithm constructs a damage map directly from the measured data, in which an (almost) zero-reference background is obtained, and where measurement noise and excitation non-uniformity are effectively suppressed. The efficiency of the proposed technique is evaluated and confirmed through synthetic data and experimental results of a carbon fiber reinforced polymer with various artificial defects.