A tight bound for exhaustive key search attacks against Message Authentication Codes

V. P. D. Sá, D. Boccardo, L. D. C. Carmo, Raphael Machado
{"title":"A tight bound for exhaustive key search attacks against Message Authentication Codes","authors":"V. P. D. Sá, D. Boccardo, L. D. C. Carmo, Raphael Machado","doi":"10.1051/ITA/2012025","DOIUrl":null,"url":null,"abstract":"A Message Authentication Code (MAC) is a function that takes a message and a key as parameters and outputs an authentication of the message. MAC are used to guarantee the legitimacy of messages exchanged through a network, since generating a correct authentication requires the knowledge of the key defined secretly by trusted parties. However, an attacker with access to a sufficiently large number of message/authentication pairs may use a brute force algorithm to infer the secret key: from a set containing initially all possible key candidates, subsequently remove those that yield an incorrect authentication, proceeding this way for each intercepted message/authentication pair until a single key remains. In this paper, we determine an exact formula for the expected number of message/authentication pairs that must be used before such form of attack is successful, along with an asymptotical bound that is both simple and tight. We conclude by illustrating a modern application where this bound comes in handy, namely the estimation of security levels in reflection-based verification of software integrity.","PeriodicalId":438841,"journal":{"name":"RAIRO Theor. Informatics Appl.","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Theor. Informatics Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ITA/2012025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A Message Authentication Code (MAC) is a function that takes a message and a key as parameters and outputs an authentication of the message. MAC are used to guarantee the legitimacy of messages exchanged through a network, since generating a correct authentication requires the knowledge of the key defined secretly by trusted parties. However, an attacker with access to a sufficiently large number of message/authentication pairs may use a brute force algorithm to infer the secret key: from a set containing initially all possible key candidates, subsequently remove those that yield an incorrect authentication, proceeding this way for each intercepted message/authentication pair until a single key remains. In this paper, we determine an exact formula for the expected number of message/authentication pairs that must be used before such form of attack is successful, along with an asymptotical bound that is both simple and tight. We conclude by illustrating a modern application where this bound comes in handy, namely the estimation of security levels in reflection-based verification of software integrity.
针对消息身份验证码的穷举键搜索攻击的紧边界
消息认证码(Message Authentication Code, MAC)是一个以消息和密钥作为参数并输出消息认证的函数。MAC用于保证通过网络交换的消息的合法性,因为生成正确的身份验证需要知道由受信任方秘密定义的密钥。然而,拥有足够数量的消息/身份验证对访问权限的攻击者可能会使用暴力破解算法来推断秘密密钥:从最初包含所有可能的候选密钥的集合中,随后删除那些产生错误身份验证的密钥,对每个截获的消息/身份验证对都以这种方式进行,直到留下一个密钥。在本文中,我们确定了在这种形式的攻击成功之前必须使用的消息/身份验证对的期望数量的精确公式,以及一个既简单又严密的渐近边界。最后,我们举例说明了一个现代应用程序,在这个应用程序中,这个界限会派上用场,即在基于反射的软件完整性验证中对安全级别的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信