{"title":"Improving Data Grids Performance by Using Popular File Replicate First Algorithm","authors":"Fang-Yie Leu, Ming-Chang Lee, Jia-Chun Lin","doi":"10.1109/BWCCA.2011.69","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an adaptive data replication algorithm, called the Popular File Replicate First algorithm (PFRF for short), which is developed on a star-topology data grid with limited storage space based on aggregated information on previous file accesses. The PFRF periodically calculates file access popularity to track the variation of users¡¦ access behaviour behaviors, and then replicates popular files to appropriate sites to adapt to the variation. We employ several types of file access behaviors, including Zipf-like, geometric, and uniform distributions, to evaluate PFRF. The simulation results show that PFRF can effectively improve average job turnaround time and data availability as compared with those of the tested algorithms.","PeriodicalId":391671,"journal":{"name":"2011 International Conference on Broadband and Wireless Computing, Communication and Applications","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Broadband and Wireless Computing, Communication and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BWCCA.2011.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, we propose an adaptive data replication algorithm, called the Popular File Replicate First algorithm (PFRF for short), which is developed on a star-topology data grid with limited storage space based on aggregated information on previous file accesses. The PFRF periodically calculates file access popularity to track the variation of users¡¦ access behaviour behaviors, and then replicates popular files to appropriate sites to adapt to the variation. We employ several types of file access behaviors, including Zipf-like, geometric, and uniform distributions, to evaluate PFRF. The simulation results show that PFRF can effectively improve average job turnaround time and data availability as compared with those of the tested algorithms.