Classification of News Articles for Learning Using the K-Nearest Neighbor Algorithm

U. Pujianto, Harits Ar Rosyid, M. K. Anam
{"title":"Classification of News Articles for Learning Using the K-Nearest Neighbor Algorithm","authors":"U. Pujianto, Harits Ar Rosyid, M. K. Anam","doi":"10.1109/ICET53279.2021.9575101","DOIUrl":null,"url":null,"abstract":"Tween Tribune is an online website that provides daily news articles for children, teenagers, and teachers. The purpose of this study is to classify articles based on the level of article popularity based on comments and the number of viewers available on Tween Tribune. The clustering of these categories is carried out using the k-Means Clustering method. The data classification process uses the k Nearest Neighbor algorithm. The classification results show that articles in the popular category contain the most commented and assigned data. Furthermore, it is shown by the reasonable result of the classification accuracy of 87.58%.","PeriodicalId":187876,"journal":{"name":"2021 7th International Conference on Education and Technology (ICET)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th International Conference on Education and Technology (ICET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICET53279.2021.9575101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Tween Tribune is an online website that provides daily news articles for children, teenagers, and teachers. The purpose of this study is to classify articles based on the level of article popularity based on comments and the number of viewers available on Tween Tribune. The clustering of these categories is carried out using the k-Means Clustering method. The data classification process uses the k Nearest Neighbor algorithm. The classification results show that articles in the popular category contain the most commented and assigned data. Furthermore, it is shown by the reasonable result of the classification accuracy of 87.58%.
基于k近邻算法的新闻文章学习分类
Tween Tribune是一个为儿童、青少年和教师提供每日新闻文章的在线网站。本研究的目的是根据文章在Tween Tribune上的评论和浏览者数量的受欢迎程度对文章进行分类。这些类别的聚类使用k-Means聚类方法进行。数据分类过程使用k近邻算法。分类结果表明,热门类别中的文章包含最多的评论和分配数据。结果表明,该方法的分类准确率为87.58%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信