Design 4x1 Space-Time Conjugate Two-Path Full-Rate OFDM Systems

H. Yeh, Jun Zhou
{"title":"Design 4x1 Space-Time Conjugate Two-Path Full-Rate OFDM Systems","authors":"H. Yeh, Jun Zhou","doi":"10.1109/RASSE54974.2022.9989986","DOIUrl":null,"url":null,"abstract":"Secured and robust wireless communication systems are critical in rapidly changing mobile fading channels. Further developing the 2x1 conjugate cancellation (CC), we proposed a 4x1 space-time (ST) orthogonal frequency division multiplexing (OFDM) system in conjunction with CC as a block coded two-path transmission scheme. This full-rate 4x1 STCCOFDM system alleviates the effect of inter-carrier interference (ICI) in mobile channels with an outstanding BER performance due to the high diversity order and two-path CC block coding scheme which offers high signal-to-ICI ratio. Both Walsh–Hadamard transform (WHT) and Zadoff-Chu transform (ZCT) are used as the orthogonal pre-coder to further improve bit error rate (BER) performance. Employing the unique pre-coder at the transmitter, the security is achieved at the user’s receiver terminal since the user must perform the inverse operation via a prior known pre-coder. By employing the same order M-ary modulation in transmission, this 4x1 pre-coded full-rate STCCOFDM systems offer an outstanding BER than that of the 4x1 pre-coded half-rate ST OFDM system in mobile channels with the same bandwidth efficiency. By using a higher order M-ary modulation in transmission, the 4x1 full-rate STCCOFDM systems offer an outstanding BER over the full-rate 4x1 ST OFDM in mobile environments with the same bandwidth efficiency. Simulations prove that this full-rate 4x1 STCCOFDM systems are robust to mobile channels and the architecture can be generalized to multiple receiver antennas in the fifth generation (5G) systems.","PeriodicalId":382440,"journal":{"name":"2022 IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RASSE54974.2022.9989986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Secured and robust wireless communication systems are critical in rapidly changing mobile fading channels. Further developing the 2x1 conjugate cancellation (CC), we proposed a 4x1 space-time (ST) orthogonal frequency division multiplexing (OFDM) system in conjunction with CC as a block coded two-path transmission scheme. This full-rate 4x1 STCCOFDM system alleviates the effect of inter-carrier interference (ICI) in mobile channels with an outstanding BER performance due to the high diversity order and two-path CC block coding scheme which offers high signal-to-ICI ratio. Both Walsh–Hadamard transform (WHT) and Zadoff-Chu transform (ZCT) are used as the orthogonal pre-coder to further improve bit error rate (BER) performance. Employing the unique pre-coder at the transmitter, the security is achieved at the user’s receiver terminal since the user must perform the inverse operation via a prior known pre-coder. By employing the same order M-ary modulation in transmission, this 4x1 pre-coded full-rate STCCOFDM systems offer an outstanding BER than that of the 4x1 pre-coded half-rate ST OFDM system in mobile channels with the same bandwidth efficiency. By using a higher order M-ary modulation in transmission, the 4x1 full-rate STCCOFDM systems offer an outstanding BER over the full-rate 4x1 ST OFDM in mobile environments with the same bandwidth efficiency. Simulations prove that this full-rate 4x1 STCCOFDM systems are robust to mobile channels and the architecture can be generalized to multiple receiver antennas in the fifth generation (5G) systems.
设计4x1空时共轭双径全速率OFDM系统
在快速变化的移动衰落信道中,安全可靠的无线通信系统至关重要。进一步发展2x1共轭抵消(CC),我们提出了一个4x1时空(ST)正交频分复用(OFDM)系统结合CC作为块编码双路传输方案。该全速率4x1 stcccofdm系统缓解了移动信道中载波间干扰(ICI)的影响,由于其高分集阶和双径CC分组编码方案提供了高信噪比,具有出色的误码率性能。采用Walsh-Hadamard变换(WHT)和Zadoff-Chu变换(ZCT)作为正交预编码器,进一步提高了误码率(BER)性能。在发送端采用唯一的预编码器,由于用户必须通过先前已知的预编码器执行反向操作,因此在用户的接收端实现了安全性。通过在传输中采用相同阶数的M-ary调制,该4x1预编码全速率STCCOFDM系统在相同带宽效率的移动信道中比4x1预编码半速率ST OFDM系统提供了出色的BER。通过在传输中使用更高阶的M-ary调制,4x1全速率STCCOFDM系统在相同带宽效率的移动环境中比全速率4x1 ST OFDM提供出色的BER。仿真结果表明,该全速率4x1 STCCOFDM系统对移动信道具有鲁棒性,该架构可推广到5G系统中的多接收天线中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信