Operation Capability Analysis and Experiments of Underactuated Compliant Multi-Fingered Hands

Shunli Xiao, J. Di, J. Zhang, Quanliang Zhao, G. He
{"title":"Operation Capability Analysis and Experiments of Underactuated Compliant Multi-Fingered Hands","authors":"Shunli Xiao, J. Di, J. Zhang, Quanliang Zhao, G. He","doi":"10.31875/2409-9694.2020.07.4","DOIUrl":null,"url":null,"abstract":"In this paper, operation capabilities of underactuated compliant robot hands have been investigated based on the shape stability analysis of underactuated compliant fingers and operation modes analysis of human hands. It is shown that the operation modes of robot hands can be classified into two major classes, namely, enveloping grasp mode and pinch mode. For the two operation modes, two principles are respectively presented with regard to the mechanical design issues of the underactuated robot hands. According to the principles presented in this paper, a robot hand prototype with four underactuated compliant fingers has been fabricated. On the robot hand prototype, enveloping grasp capability of underactuated compliant robot hands has been verified by many experiments. For precision operations, a proposition is presented and it is shown that the prototype should be further improved.","PeriodicalId":234563,"journal":{"name":"International Journal of Robotics and Automation Technology","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robotics and Automation Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31875/2409-9694.2020.07.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, operation capabilities of underactuated compliant robot hands have been investigated based on the shape stability analysis of underactuated compliant fingers and operation modes analysis of human hands. It is shown that the operation modes of robot hands can be classified into two major classes, namely, enveloping grasp mode and pinch mode. For the two operation modes, two principles are respectively presented with regard to the mechanical design issues of the underactuated robot hands. According to the principles presented in this paper, a robot hand prototype with four underactuated compliant fingers has been fabricated. On the robot hand prototype, enveloping grasp capability of underactuated compliant robot hands has been verified by many experiments. For precision operations, a proposition is presented and it is shown that the prototype should be further improved.
欠驱动柔性多指手操作能力分析与实验
本文基于欠驱动柔顺手指的形状稳定性分析和人手的操作模式分析,研究了欠驱动柔顺机械手的操作能力。研究表明,机器人双手的操作模式可分为包络抓取模式和夹紧模式两大类。针对这两种工作方式,分别提出了欠驱动机械手的机械设计原则。根据本文提出的原理,制作了具有四个欠驱动柔顺手指的机械手原型。在机械人手样机上,对欠驱动柔性机械人手的包络抓取能力进行了多次实验验证。在精度运算方面,提出了改进的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信