Automated Enumeration and Classification of Bacteria in Fluorescent Microscopy Imagery

Yongjian Yu, Jue Wang
{"title":"Automated Enumeration and Classification of Bacteria in Fluorescent Microscopy Imagery","authors":"Yongjian Yu, Jue Wang","doi":"10.1109/LSC.2018.8572240","DOIUrl":null,"url":null,"abstract":"We present a system of techniques for automatic segmentation, quantification, and morphotype classification of vaginal bacteria from multi-band fluorescent microscopic imagery. Individual bacteria segmentation is accomplished via data pre-processing, blobness enhancement, thresholding, and multi-scale morphological decomposition. A new spotness feature is devised and extracted to effectively quantify bacterial morphotypes. A supervised classifier is trained on microscopic scans containing thousands of bacteria. Our approach is able to predict and segment bacteria with a high accuracy. The average classification error in terms of bacteria composition ratio is 6% relative to the ground-truth.","PeriodicalId":254835,"journal":{"name":"2018 IEEE Life Sciences Conference (LSC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Life Sciences Conference (LSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LSC.2018.8572240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present a system of techniques for automatic segmentation, quantification, and morphotype classification of vaginal bacteria from multi-band fluorescent microscopic imagery. Individual bacteria segmentation is accomplished via data pre-processing, blobness enhancement, thresholding, and multi-scale morphological decomposition. A new spotness feature is devised and extracted to effectively quantify bacterial morphotypes. A supervised classifier is trained on microscopic scans containing thousands of bacteria. Our approach is able to predict and segment bacteria with a high accuracy. The average classification error in terms of bacteria composition ratio is 6% relative to the ground-truth.
荧光显微镜图像中细菌的自动计数和分类
我们提出了一个系统的技术自动分割,定量和形态分类阴道细菌从多波段荧光显微图像。单个细菌的分割是通过数据预处理、斑点增强、阈值分割和多尺度形态分解来完成的。设计并提取了一种新的斑点特征来有效地量化细菌形态。一个有监督的分类器是在包含数千个细菌的显微镜扫描上训练的。我们的方法能够以很高的准确性预测和分割细菌。细菌组成比的平均分类误差相对于基本事实为6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信