Adaptive Control of a Linear, Scalar Hyperbolic PDE with Time-Varying Coefficients

Henrik Anfinsen, O. Aamo
{"title":"Adaptive Control of a Linear, Scalar Hyperbolic PDE with Time-Varying Coefficients","authors":"Henrik Anfinsen, O. Aamo","doi":"10.1109/MED48518.2020.9183190","DOIUrl":null,"url":null,"abstract":"We extend a previous result regarding adaptive control of a linear hyperbolic partial differential equation (PDE) with time-varying in-domain source coefficient in two ways. Firstly, we introduce a parametrization of the uncertain time-varying in-domain source coefficient that allows for a broader class of systems compared to previous result. Secondly, and more importantly, we introduce an uncertain scaling factor in the input boundary condition which is present in most applications, but wasn't handled in the previous result. All system parameters except the transport speed are uncertain and time-varying, although parametrizable as a linear combination of uncertain constants and certain time-variance. Closed-loop convergence of the state to the origin is proven, and performance is demonstrated for a numerical example.","PeriodicalId":418518,"journal":{"name":"2020 28th Mediterranean Conference on Control and Automation (MED)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th Mediterranean Conference on Control and Automation (MED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED48518.2020.9183190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We extend a previous result regarding adaptive control of a linear hyperbolic partial differential equation (PDE) with time-varying in-domain source coefficient in two ways. Firstly, we introduce a parametrization of the uncertain time-varying in-domain source coefficient that allows for a broader class of systems compared to previous result. Secondly, and more importantly, we introduce an uncertain scaling factor in the input boundary condition which is present in most applications, but wasn't handled in the previous result. All system parameters except the transport speed are uncertain and time-varying, although parametrizable as a linear combination of uncertain constants and certain time-variance. Closed-loop convergence of the state to the origin is proven, and performance is demonstrated for a numerical example.
具有时变系数的线性标量双曲偏微分方程的自适应控制
本文用两种方法推广了具有时变域源系数的线性双曲型偏微分方程的自适应控制。首先,我们引入了不确定时变域内源系数的参数化,与之前的结果相比,它允许更广泛的系统类别。其次,更重要的是,我们在输入边界条件中引入了一个不确定的比例因子,这在大多数应用中都存在,但在之前的结果中没有处理。除了传输速度之外,所有系统参数都是不确定和时变的,尽管可以作为不确定常数和一定时变的线性组合进行参数化。证明了状态对原点的闭环收敛性,并通过数值算例验证了其性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信