{"title":"A SOM combined with KNN for classification task","authors":"L. A. Silva, E. Del-Moral-Hernandez","doi":"10.1109/IJCNN.2011.6033525","DOIUrl":null,"url":null,"abstract":"Classification is a common task that humans perform when making a decision. Techniques of Artificial Neural Networks (ANN) or statistics are used to help in an automatic classification. This work addresses a method based in Self-Organizing Maps ANN (SOM) and K-Nearest Neighbor (KNN) statistical classifier, called SOM-KNN, applied to digits recognition in car plates. While being much faster than more traditional methods, the proposed SOM-KNN keeps competitive classification rates with respect to them. The experiments here presented contrast SOM-KNN with individual classifiers, SOM and KNN, and the results are classification rates of 89.48±5.6, 84.23±5.9 and 91.03±5.1 percent, respectively. The equivalency between SOM-KNN and KNN recognition results are confirmed with ANOVA test, which shows a p-value of 0.27.","PeriodicalId":415833,"journal":{"name":"The 2011 International Joint Conference on Neural Networks","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2011 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2011.6033525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
Classification is a common task that humans perform when making a decision. Techniques of Artificial Neural Networks (ANN) or statistics are used to help in an automatic classification. This work addresses a method based in Self-Organizing Maps ANN (SOM) and K-Nearest Neighbor (KNN) statistical classifier, called SOM-KNN, applied to digits recognition in car plates. While being much faster than more traditional methods, the proposed SOM-KNN keeps competitive classification rates with respect to them. The experiments here presented contrast SOM-KNN with individual classifiers, SOM and KNN, and the results are classification rates of 89.48±5.6, 84.23±5.9 and 91.03±5.1 percent, respectively. The equivalency between SOM-KNN and KNN recognition results are confirmed with ANOVA test, which shows a p-value of 0.27.