DeePEB

Qipan Wang, Xiaohan Gao, Yibo Lin, Runsheng Wang, Ru Huang
{"title":"DeePEB","authors":"Qipan Wang, Xiaohan Gao, Yibo Lin, Runsheng Wang, Ru Huang","doi":"10.1145/3508352.3549398","DOIUrl":null,"url":null,"abstract":"Post Exposure Baking (PEB) has been widely utilized in advanced lithography. PEB simulation is critical in the lithography simulation flow, as it bridges the optical simulation result and the final developed profile in the photoresist. The process of PEB can be described by coupled partial differential equations (PDE) and corresponding boundary and initial conditions. Recent years have witnessed growing presence of machine learning algorithms in lithography simulation, while PEB simulation is often ignored or treated with compact models, considering the huge cost of solving PDEs exactly. In this work, based on the observation of the physical essence of PEB, we propose DeePEB: a neural PDE Solver for PEB simulation. This model is capable of predicting the PEB latent image with high accuracy and >100 × acceleration (compared to the commercial rigorous simulation tool), paving the way for efficient and accurate photoresist modeling in lithography simulation and layout optimization.","PeriodicalId":367046,"journal":{"name":"Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508352.3549398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Post Exposure Baking (PEB) has been widely utilized in advanced lithography. PEB simulation is critical in the lithography simulation flow, as it bridges the optical simulation result and the final developed profile in the photoresist. The process of PEB can be described by coupled partial differential equations (PDE) and corresponding boundary and initial conditions. Recent years have witnessed growing presence of machine learning algorithms in lithography simulation, while PEB simulation is often ignored or treated with compact models, considering the huge cost of solving PDEs exactly. In this work, based on the observation of the physical essence of PEB, we propose DeePEB: a neural PDE Solver for PEB simulation. This model is capable of predicting the PEB latent image with high accuracy and >100 × acceleration (compared to the commercial rigorous simulation tool), paving the way for efficient and accurate photoresist modeling in lithography simulation and layout optimization.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信