A Privacy Preserving Algorithm for Mining Rare Association Rules by Homomorphic Encryption

Weimin Ouyang, Qinhua Huang
{"title":"A Privacy Preserving Algorithm for Mining Rare Association Rules by Homomorphic Encryption","authors":"Weimin Ouyang, Qinhua Huang","doi":"10.1109/ICSAI48974.2019.9010219","DOIUrl":null,"url":null,"abstract":"Privacy-preserving data mining have greate significance in the era of big data. The Privacy-preserving condition on rare association rules mining is about the sensitive information regarding participants. Each side have a private dataset, aims to collaboratively find rare association rules on data set like a logically unified frame, but actually composed of distributed private data set. We proposed a new efficient algorithm to discover privacy-preserving rare association rule mining technique. The main principle idea is that with the secure two-party computation theory we employ homomorphic encryption to hide the private information.","PeriodicalId":270809,"journal":{"name":"2019 6th International Conference on Systems and Informatics (ICSAI)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 6th International Conference on Systems and Informatics (ICSAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAI48974.2019.9010219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Privacy-preserving data mining have greate significance in the era of big data. The Privacy-preserving condition on rare association rules mining is about the sensitive information regarding participants. Each side have a private dataset, aims to collaboratively find rare association rules on data set like a logically unified frame, but actually composed of distributed private data set. We proposed a new efficient algorithm to discover privacy-preserving rare association rule mining technique. The main principle idea is that with the secure two-party computation theory we employ homomorphic encryption to hide the private information.
一种利用同态加密挖掘稀有关联规则的隐私保护算法
在大数据时代,保护隐私的数据挖掘具有重要意义。稀有关联规则挖掘的隐私保护条件是关于参与者的敏感信息。每一方都有一个私有数据集,目的是协同发现数据集上罕见的关联规则,就像一个逻辑上统一的框架,但实际上是由分布式私有数据集组成的。提出了一种新的高效的算法来发现保护隐私的稀有关联规则挖掘技术。其主要思想是利用安全的两方计算理论,采用同态加密来隐藏私有信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信