Enhanced Inference for Finite Population Sampling-Based Prevalence Estimation with Misclassification Errors

Lin Ge, Yuzi Zhang, L. Waller, R. Lyles
{"title":"Enhanced Inference for Finite Population Sampling-Based Prevalence Estimation with Misclassification Errors","authors":"Lin Ge, Yuzi Zhang, L. Waller, R. Lyles","doi":"10.1080/00031305.2023.2250401","DOIUrl":null,"url":null,"abstract":"Epidemiologic screening programs often make use of tests with small, but non-zero probabilities of misdiagnosis. In this article, we assume the target population is finite with a fixed number of true cases, and that we apply an imperfect test with known sensitivity and specificity to a sample of individuals from the population. In this setting, we propose an enhanced inferential approach for use in conjunction with sampling-based bias-corrected prevalence estimation. While ignoring the finite nature of the population can yield markedly conservative estimates, direct application of a standard finite population correction (FPC) conversely leads to underestimation of variance. We uncover a way to leverage the typical FPC indirectly toward valid statistical inference. In particular, we derive a readily estimable extra variance component induced by misclassification in this specific but arguably common diagnostic testing scenario. Our approach yields a standard error estimate that properly captures the sampling variability of the usual bias-corrected maximum likelihood estimator of disease prevalence. Finally, we develop an adapted Bayesian credible interval for the true prevalence that offers improved frequentist properties (i.e., coverage and width) relative to a Wald-type confidence interval. We report the simulation results to demonstrate the enhanced performance of the proposed inferential methods.","PeriodicalId":342642,"journal":{"name":"The American Statistician","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The American Statistician","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00031305.2023.2250401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Epidemiologic screening programs often make use of tests with small, but non-zero probabilities of misdiagnosis. In this article, we assume the target population is finite with a fixed number of true cases, and that we apply an imperfect test with known sensitivity and specificity to a sample of individuals from the population. In this setting, we propose an enhanced inferential approach for use in conjunction with sampling-based bias-corrected prevalence estimation. While ignoring the finite nature of the population can yield markedly conservative estimates, direct application of a standard finite population correction (FPC) conversely leads to underestimation of variance. We uncover a way to leverage the typical FPC indirectly toward valid statistical inference. In particular, we derive a readily estimable extra variance component induced by misclassification in this specific but arguably common diagnostic testing scenario. Our approach yields a standard error estimate that properly captures the sampling variability of the usual bias-corrected maximum likelihood estimator of disease prevalence. Finally, we develop an adapted Bayesian credible interval for the true prevalence that offers improved frequentist properties (i.e., coverage and width) relative to a Wald-type confidence interval. We report the simulation results to demonstrate the enhanced performance of the proposed inferential methods.
基于有限总体抽样的误分类误差患病率估计的增强推理
流行病学筛查项目经常使用误诊概率小但非零的测试。在本文中,我们假设目标人群是有限的,真实病例的数量是固定的,并且我们将具有已知灵敏度和特异性的不完美测试应用于人群中的个体样本。在这种情况下,我们提出了一种增强的推理方法,可与基于抽样的偏差校正患病率估计结合使用。虽然忽略总体的有限性质可以产生明显保守的估计,但直接应用标准有限总体校正(FPC)反过来会导致方差的低估。我们发现了一种间接利用典型FPC进行有效统计推断的方法。特别是,我们推导了一个容易估计的额外方差成分,由错误分类引起,在这个特定的,但可以说是常见的诊断测试场景。我们的方法产生了一个标准误差估计,该估计适当地捕获了疾病流行的通常偏差校正的最大似然估计的抽样变异性。最后,我们为真实流行率开发了一个适应的贝叶斯可信区间,相对于wald型置信区间,它提供了改进的频率特性(即覆盖率和宽度)。我们报告了仿真结果,以证明所提出的推理方法的性能增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信