Li–Yorke chaos of linear differential equations in a finite-dimensional space with a weak topology

Xu Zhang, Nan Jiang, Qigui Yang, Guanrong Chen
{"title":"Li–Yorke chaos of linear differential equations in a finite-dimensional space with a weak topology","authors":"Xu Zhang, Nan Jiang, Qigui Yang, Guanrong Chen","doi":"10.1063/5.0163463","DOIUrl":null,"url":null,"abstract":"Li–Yorke chaos of linear differential equations in a finite-dimensional space with a weak topology is introduced. Based on this topology on the Euclidean space, a flow generated from a linear differential equation is proved to be Li–Yorke chaotic under certain conditions, which is in sharp contract to the well-known fact that linear differential equations cannot be chaotic in a finite-dimensional space with a strong topology.","PeriodicalId":340975,"journal":{"name":"Chaos: An Interdisciplinary Journal of Nonlinear Science","volume":"180 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos: An Interdisciplinary Journal of Nonlinear Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0163463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Li–Yorke chaos of linear differential equations in a finite-dimensional space with a weak topology is introduced. Based on this topology on the Euclidean space, a flow generated from a linear differential equation is proved to be Li–Yorke chaotic under certain conditions, which is in sharp contract to the well-known fact that linear differential equations cannot be chaotic in a finite-dimensional space with a strong topology.
有限维弱拓扑空间中线性微分方程的Li-Yorke混沌
介绍了有限维空间弱拓扑下线性微分方程的Li-Yorke混沌。基于这种欧氏空间上的拓扑,在一定条件下证明了线性微分方程产生的流是Li-Yorke混沌的,这与众所周知的线性微分方程在具有强拓扑的有限维空间中不可能是混沌的事实形成了尖锐的矛盾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信