Throughput Optimization of IEEE 802.15.4e TSCH-Based Scheduling: A Deep Neural Network (DNN) Scheme

Md. Niaz Morshedul Haque, Insoo Koo
{"title":"Throughput Optimization of IEEE 802.15.4e TSCH-Based Scheduling: A Deep Neural Network (DNN) Scheme","authors":"Md. Niaz Morshedul Haque, Insoo Koo","doi":"10.1109/ICCIT57492.2022.10054722","DOIUrl":null,"url":null,"abstract":"This paper describes a simple and reliable deep learning-based deep neural network (DNN) model that can conduct time-slotted channel hopping (TSCH) based scheduling in accordance with IEEE 802.15.4e guidelines. In a centralized fashion, the TSCH network develops as a maximum weighted bipartite matching strategy for links to cell assignment of a slot frame. The cell assignment problem is solved using a well-known Hungarian assignment algorithm, which considers network throughput as a bipartite-edge-weight. We use the Hungarian scheduling technique to create training data and train the DNN accordingly. The results of the simulations show that the proposed DNN-based scheduling scheme outperforms Hungarian algorithm-based methods while using fewer computational resources.","PeriodicalId":255498,"journal":{"name":"2022 25th International Conference on Computer and Information Technology (ICCIT)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 25th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIT57492.2022.10054722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes a simple and reliable deep learning-based deep neural network (DNN) model that can conduct time-slotted channel hopping (TSCH) based scheduling in accordance with IEEE 802.15.4e guidelines. In a centralized fashion, the TSCH network develops as a maximum weighted bipartite matching strategy for links to cell assignment of a slot frame. The cell assignment problem is solved using a well-known Hungarian assignment algorithm, which considers network throughput as a bipartite-edge-weight. We use the Hungarian scheduling technique to create training data and train the DNN accordingly. The results of the simulations show that the proposed DNN-based scheduling scheme outperforms Hungarian algorithm-based methods while using fewer computational resources.
基于IEEE 802.15.4e tsch调度的吞吐量优化:一种深度神经网络(DNN)方案
本文描述了一种简单可靠的基于深度学习的深度神经网络(DNN)模型,该模型可以根据IEEE 802.15.4e准则进行基于时隙信道跳频(TSCH)的调度。在集中的方式下,TSCH网络发展为一种最大加权二部匹配策略,用于链接到槽帧的单元分配。单元分配问题使用著名的匈牙利分配算法解决,该算法将网络吞吐量视为双侧边权。我们使用匈牙利调度技术来创建训练数据并相应地训练DNN。仿真结果表明,基于dnn的调度方案在使用较少的计算资源的同时优于基于Hungarian算法的调度方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信