{"title":"Multi-label Learning for Activity Recognition","authors":"Rahul Kumar, I. Qamar, J. Virdi, N. C. Krishnan","doi":"10.1109/IE.2015.32","DOIUrl":null,"url":null,"abstract":"Advances in pervasive and ubiquitous computing have resulted in the development of sensors that can be easily deployed in the natural habitat of a human to acquire activity related data. However, inferring meaningful activity information from sensor data is still a challenging problem. This paper addresses the problem of inferring activities that are simultaneously performed by multiple residents in a smart home or single resident performing multiple activities concurrently. The paper formulates this problem as learning multiple activity labels from a sequence of sensor data. It investigates the suitability of multi-label learning algorithms inspired by decision trees as a proposed solution to the problem. The results obtained from the experiments on four benchmarking multi-resident activity datasets clearly indicate the superiority of decision tree ensemble (random forests) based approaches for multi-label learning.","PeriodicalId":228285,"journal":{"name":"2015 International Conference on Intelligent Environments","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Intelligent Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IE.2015.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Advances in pervasive and ubiquitous computing have resulted in the development of sensors that can be easily deployed in the natural habitat of a human to acquire activity related data. However, inferring meaningful activity information from sensor data is still a challenging problem. This paper addresses the problem of inferring activities that are simultaneously performed by multiple residents in a smart home or single resident performing multiple activities concurrently. The paper formulates this problem as learning multiple activity labels from a sequence of sensor data. It investigates the suitability of multi-label learning algorithms inspired by decision trees as a proposed solution to the problem. The results obtained from the experiments on four benchmarking multi-resident activity datasets clearly indicate the superiority of decision tree ensemble (random forests) based approaches for multi-label learning.