Cyclic stratum of Frobenius manifolds, Borel-Laplace $(\boldsymbol\alpha,\boldsymbol\beta)$-multitransforms, and integral representations of solutions of Quantum Differential Equations

G. Cotti
{"title":"Cyclic stratum of Frobenius manifolds, Borel-Laplace $(\\boldsymbol\\alpha,\\boldsymbol\\beta)$-multitransforms, and integral representations of solutions of Quantum Differential Equations","authors":"G. Cotti","doi":"10.1017/S1743921318005732","DOIUrl":null,"url":null,"abstract":"In the first part of this paper, we introduce the notion of \"cyclic stratum\" of a Frobenius manifold $M$. This is the set of points of the extended manifold $\\mathbb C^*\\times M$ at which the unit vector field is a cyclic vector for the isomonodromic system defined by the flatness condition of the extended deformed connection. The study of the geometry of the complement of the cyclic stratum is addressed. We show that at points of the cyclic stratum, the isomonodromic system attached to $M$ can be reduced to a scalar differential equation, called the \"master differential equation\" of $M$. In the case of Frobenius manifolds coming from Gromov-Witten theory, namely quantum cohomologies of smooth projective varieties, such a construction reproduces the notion of quantum differential equation. \nIn the second part of the paper, we introduce two multilinear transforms, called \"Borel-Laplace $(\\boldsymbol \\alpha,\\boldsymbol\\beta)$-multitransforms\", on spaces of Ribenboim formal power series with exponents and coefficients in an arbitrary finite dimensional $\\mathbb C$-algebra $A$. When $A$ is specialized to the cohomology of smooth projective varieties, the integral forms of the Borel-Laplace $(\\boldsymbol \\alpha,\\boldsymbol\\beta)$-multitransforms are used in order to rephrase the Quantum Lefschetz Theorem. This leads to explicit Mellin-Barnes integral representations of solutions of the quantum differential equations for a wide class of smooth projective varieties, including Fano complete intersections in projective spaces. \nIn the third and final part of the paper, as an application, we show how to use the new analytic tools, introduced in the previous parts, in order to study the quantum differential equations of Hirzebruch surfaces. This finally leads to the proof of Dubrovin Conjecture for all Hirzebruch surfaces.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S1743921318005732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the first part of this paper, we introduce the notion of "cyclic stratum" of a Frobenius manifold $M$. This is the set of points of the extended manifold $\mathbb C^*\times M$ at which the unit vector field is a cyclic vector for the isomonodromic system defined by the flatness condition of the extended deformed connection. The study of the geometry of the complement of the cyclic stratum is addressed. We show that at points of the cyclic stratum, the isomonodromic system attached to $M$ can be reduced to a scalar differential equation, called the "master differential equation" of $M$. In the case of Frobenius manifolds coming from Gromov-Witten theory, namely quantum cohomologies of smooth projective varieties, such a construction reproduces the notion of quantum differential equation. In the second part of the paper, we introduce two multilinear transforms, called "Borel-Laplace $(\boldsymbol \alpha,\boldsymbol\beta)$-multitransforms", on spaces of Ribenboim formal power series with exponents and coefficients in an arbitrary finite dimensional $\mathbb C$-algebra $A$. When $A$ is specialized to the cohomology of smooth projective varieties, the integral forms of the Borel-Laplace $(\boldsymbol \alpha,\boldsymbol\beta)$-multitransforms are used in order to rephrase the Quantum Lefschetz Theorem. This leads to explicit Mellin-Barnes integral representations of solutions of the quantum differential equations for a wide class of smooth projective varieties, including Fano complete intersections in projective spaces. In the third and final part of the paper, as an application, we show how to use the new analytic tools, introduced in the previous parts, in order to study the quantum differential equations of Hirzebruch surfaces. This finally leads to the proof of Dubrovin Conjecture for all Hirzebruch surfaces.
Frobenius流形的循环层,Borel-Laplace $(\boldsymbol\alpha,\boldsymbol\beta)$ -多重变换,以及量子微分方程解的积分表示
在本文的第一部分中,我们引入了Frobenius流形$M$的“循环层”的概念。这是扩展流形$\mathbb C^*\times M$的点的集合,其中单位向量场是由扩展变形连接的平整度条件定义的同构系统的循环向量。对旋回地层补层的几何形状进行了研究。我们证明,在循环地层的点上,$M$上的等单调系统可以简化为一个标量微分方程,称为$M$的“主微分方程”。对于来自Gromov-Witten理论的Frobenius流形,即光滑射影变的量子上同调,这种构造再现了量子微分方程的概念。在论文的第二部分,我们在任意有限维$\mathbb C$ -代数$A$中,在Ribenboim形式幂级数的指数和系数空间上,引入了两个称为“Borel-Laplace $(\boldsymbol \alpha,\boldsymbol\beta)$ -多重变换”的多重线性变换。当$A$专指光滑投影变量的上同调时,为了重新表述量子Lefschetz定理,使用了Borel-Laplace $(\boldsymbol \alpha,\boldsymbol\beta)$ -多重变换的积分形式。这导致了量子微分方程解的显式Mellin-Barnes积分表示,用于广泛的光滑射影变,包括射影空间中的Fano完全交。在论文的第三部分也是最后一部分,作为一个应用,我们展示了如何使用在前几部分中介绍的新的分析工具来研究Hirzebruch曲面的量子微分方程。这最终导致了对所有Hirzebruch曲面的Dubrovin猜想的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信