S. Mansurova, M. Espinosa, P. Rodriguez, M. Gather, K. Meerholz
{"title":"Detection of vibrations in the audio range using photorefractive polymers","authors":"S. Mansurova, M. Espinosa, P. Rodriguez, M. Gather, K. Meerholz","doi":"10.1117/12.681104","DOIUrl":null,"url":null,"abstract":"We report on the use of a photorefractive polymer composite as the active material for a planar photo- EMF detector suitable for the adaptive detection of optical phase modulated signals in the audio range (10Hz-10KHz). The composite is based on a conjugated triphenyldiamine- phenylenevinylene polymer (TPD-PPV) and is sensitized with a highly soluble fullerene derivative (PCBM). We demonstrate experimentally that the responsitivity of such polymer based detectors can be remarkably enhanced if the polymer sample is biased by an external dc field. This effect is theoretically explained by the strong dependence of the charge carrier generation rate on the external dc field, which is an inherent property of organic photoconductors.","PeriodicalId":406438,"journal":{"name":"SPIE Optics + Photonics","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Optics + Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.681104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We report on the use of a photorefractive polymer composite as the active material for a planar photo- EMF detector suitable for the adaptive detection of optical phase modulated signals in the audio range (10Hz-10KHz). The composite is based on a conjugated triphenyldiamine- phenylenevinylene polymer (TPD-PPV) and is sensitized with a highly soluble fullerene derivative (PCBM). We demonstrate experimentally that the responsitivity of such polymer based detectors can be remarkably enhanced if the polymer sample is biased by an external dc field. This effect is theoretically explained by the strong dependence of the charge carrier generation rate on the external dc field, which is an inherent property of organic photoconductors.