Generation of web recommendations using implicit user feedback and normalised mutual information

V. S. Dixit, Punam Bedi, Harita Mehta
{"title":"Generation of web recommendations using implicit user feedback and normalised mutual information","authors":"V. S. Dixit, Punam Bedi, Harita Mehta","doi":"10.1504/IJKWI.2013.056362","DOIUrl":null,"url":null,"abstract":"The knowledge base of a traditional web recommender system is constructed from web logs, reflecting past user preferences which may change over time. In this paper, an algorithm, based on implicit user feedback on top N recommendations and normalised mutual information, is proposed for collaborative personalised web recommender system. The proposed algorithm updates the knowledge base taking into account the changing user preferences, in order to generate better recommendations in future. The proposed approach and collaborative personalised web recommender systems without feedback are compared. Significant improvements are observed in precision, recall and F1 measure for proposed approach.","PeriodicalId":113936,"journal":{"name":"Int. J. Knowl. Web Intell.","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Web Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJKWI.2013.056362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The knowledge base of a traditional web recommender system is constructed from web logs, reflecting past user preferences which may change over time. In this paper, an algorithm, based on implicit user feedback on top N recommendations and normalised mutual information, is proposed for collaborative personalised web recommender system. The proposed algorithm updates the knowledge base taking into account the changing user preferences, in order to generate better recommendations in future. The proposed approach and collaborative personalised web recommender systems without feedback are compared. Significant improvements are observed in precision, recall and F1 measure for proposed approach.
使用隐式用户反馈和规范化互信息生成web推荐
传统的web推荐系统的知识库是由web日志构建的,反映了过去用户的偏好,这些偏好可能会随着时间的推移而改变。本文提出了一种基于用户对top N推荐的隐式反馈和归一化互信息的协同个性化web推荐算法。该算法根据用户偏好的变化对知识库进行更新,以便在将来生成更好的推荐。将该方法与无反馈的协作式个性化网络推荐系统进行了比较。该方法在查全率、查全率和F1测度方面均有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信