Mining social tags to predict mashup patterns

SMUC '10 Pub Date : 2010-10-30 DOI:10.1145/1871985.1871998
Khaled Goarany, Gregory Kulczycki, M. Brian Blake
{"title":"Mining social tags to predict mashup patterns","authors":"Khaled Goarany, Gregory Kulczycki, M. Brian Blake","doi":"10.1145/1871985.1871998","DOIUrl":null,"url":null,"abstract":"In the past few years, tagging has gained large momentum as a user-driven approach for categorizing and indexing content on the Web. Mashups have recently joined the list of Web resources targeted for social tagging. In the context of the social Web, a mashup is a lightweight technique for integrating applications and data over the Web. Crafting new mashups is largely a subjective process motivated by the users' initial inspiration. In this paper, we propose a tag-based approach for predicting mashup patterns, thus deriving inspiration for potential new mashups from the community's consensus. Our approach applies association rule mining techniques to discover relationships between APIs and mashups based on their annotated tags. We also advocate the importance of the mined relationships as a valuable source for recommending mashup candidates while mitigating for common problems in recommender systems. We evaluate our methodology through experimentation using real-life dataset. Our results show that our approach achieves high prediction accuracy and outperforms a direct string matching approach that lacks the mining information.","PeriodicalId":244822,"journal":{"name":"SMUC '10","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SMUC '10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1871985.1871998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

In the past few years, tagging has gained large momentum as a user-driven approach for categorizing and indexing content on the Web. Mashups have recently joined the list of Web resources targeted for social tagging. In the context of the social Web, a mashup is a lightweight technique for integrating applications and data over the Web. Crafting new mashups is largely a subjective process motivated by the users' initial inspiration. In this paper, we propose a tag-based approach for predicting mashup patterns, thus deriving inspiration for potential new mashups from the community's consensus. Our approach applies association rule mining techniques to discover relationships between APIs and mashups based on their annotated tags. We also advocate the importance of the mined relationships as a valuable source for recommending mashup candidates while mitigating for common problems in recommender systems. We evaluate our methodology through experimentation using real-life dataset. Our results show that our approach achieves high prediction accuracy and outperforms a direct string matching approach that lacks the mining information.
挖掘社会标签来预测混搭模式
在过去的几年中,标记作为一种用户驱动的对Web上的内容进行分类和索引的方法获得了很大的发展势头。Mashups最近加入了针对社会标签的Web资源列表。在社交Web上下文中,mashup是一种轻量级技术,用于通过Web集成应用程序和数据。制作新的mashup在很大程度上是一个由用户最初的灵感所激发的主观过程。在本文中,我们提出了一种基于标记的方法来预测mashup模式,从而从社区的共识中获得潜在的新mashup的灵感。我们的方法应用关联规则挖掘技术,根据api和mashup的注释标记发现它们之间的关系。我们还提倡将挖掘的关系作为推荐mashup候选对象的有价值来源的重要性,同时减轻推荐系统中的常见问题。我们通过使用真实数据集的实验来评估我们的方法。结果表明,该方法具有较高的预测精度,优于缺乏挖掘信息的直接字符串匹配方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信