Electromagnetism and special relativity

J. Pierrus
{"title":"Electromagnetism and special relativity","authors":"J. Pierrus","doi":"10.1093/OSO/9780198821915.003.0012","DOIUrl":null,"url":null,"abstract":"In 1905, when Einstein published his theory of special relativity, Maxwell’s work was already about forty years old. It is therefore both remarkable and ironic (recalling the old arguments about the aether being the ‘preferred’ reference frame for describing wave propagation) that classical electrodynamics turned out to be a relativistically correct theory. In this chapter, a range of questions in electromagnetism are considered as they relate to special relativity. In Questions 12.1–12.4 the behaviour of various physical quantities under Lorentz transformation is considered. This leads to the important concept of an invariant. Several of these are encountered, and used frequently throughout this chapter. Other topics considered include the transformationof E- and B-fields between inertial reference frames, the validity of Gauss’s law for an arbitrarily moving point charge (demonstrated numerically), the electromagnetic field tensor, Maxwell’s equations in covariant form and Larmor’s formula for a relativistic charge.","PeriodicalId":184566,"journal":{"name":"Solved Problems in Classical Electromagnetism","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solved Problems in Classical Electromagnetism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/OSO/9780198821915.003.0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In 1905, when Einstein published his theory of special relativity, Maxwell’s work was already about forty years old. It is therefore both remarkable and ironic (recalling the old arguments about the aether being the ‘preferred’ reference frame for describing wave propagation) that classical electrodynamics turned out to be a relativistically correct theory. In this chapter, a range of questions in electromagnetism are considered as they relate to special relativity. In Questions 12.1–12.4 the behaviour of various physical quantities under Lorentz transformation is considered. This leads to the important concept of an invariant. Several of these are encountered, and used frequently throughout this chapter. Other topics considered include the transformationof E- and B-fields between inertial reference frames, the validity of Gauss’s law for an arbitrarily moving point charge (demonstrated numerically), the electromagnetic field tensor, Maxwell’s equations in covariant form and Larmor’s formula for a relativistic charge.
电磁学和狭义相对论
1905年,当爱因斯坦发表狭义相对论时,麦克斯韦的工作已经有40年的历史了。因此,经典电动力学被证明是一个相对正确的理论,这既引人注目又具有讽刺意味(回想起关于以太是描述波传播的“首选”参考系的旧争论)。在这一章中,考虑到电磁学中的一系列问题,因为它们与狭义相对论有关。在问题12.1-12.4中考虑了各种物理量在洛伦兹变换下的行为。这就引出了不变量的重要概念。在本章中,我们经常遇到并使用其中的一些。其他考虑的主题包括惯性参照系之间的E场和b场的变换,高斯定律对任意移动的点电荷的有效性(数值证明),电磁场张量,协变形式的麦克斯韦方程和相对论电荷的拉莫尔公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信